Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA.
Department of Chemistry, University of California, Irvine, Irvine, California 92697, USA.
J Chem Phys. 2019 Feb 21;150(7):074505. doi: 10.1063/1.5079393.
We study the structure and dynamics of water subject to a range of static external electric fields, using molecular dynamics simulations. In particular, we monitor the changes in hydrogen bond kinetics, reorientation dynamics, and translational motions of water molecules. We find that water molecules translate and rotate slower in electric fields because the tendency to reinstate the aligned orientation reduces the probability of finding a new hydrogen bond partner and hence increases the probability of reforming already ruptured bonds. Furthermore, dipolar alignment of water molecules with the field results in structural and dynamic anisotropies even though the angularly averaged metrics indicate only minor structural changes. Through comparison of selected nonpolarizable and polarizable water models, we find that the electric field effects are stronger in polarizable water models, where field-enhanced dipole moments and thus more stable hydrogen bonds lead to slower switching of hydrogen bond partners and reduced translational mobility, compared to a nonpolarizable water model.
我们使用分子动力学模拟研究了一系列静态外电场中水分子的结构和动力学。特别是,我们监测了氢键动力学、重新取向动力学和水分子的平移运动的变化。我们发现,由于恢复对齐方向的趋势降低了找到新氢键伙伴的可能性,从而增加了已经断裂的键重新形成的可能性,因此水分子在电场中移动和旋转得更慢。此外,水分子与电场的偶极取向导致结构和动态各向异性,尽管角度平均度量仅表明结构发生了微小变化。通过比较选定的不可极化和可极化水分子模型,我们发现,在可极化水分子模型中,电场效应更强,其中增强的偶极矩和更稳定的氢键导致氢键伙伴的切换更慢,平移迁移率降低,与不可极化水分子模型相比。