Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP), Calle 59 Nro 789, B1900BTE La Plata, Argentina.
Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz, Manguinhos, CEP 21040-360 Rio de Janeiro, Brazil.
J Chem Phys. 2019 Feb 21;150(7):075102. doi: 10.1063/1.5080942.
An exciting debate arises when microscopic mechanisms involved in the denaturation of proteins at high pressures are explained. In particular, the issue emerges when the hydrophobic effect is invoked, given that hydrophobicity cannot elucidate by itself the volume changes measured during protein unfolding. In this work, we study by the use of molecular dynamics simulations and essential dynamics analysis the relation between the solvation dynamics, volume, and water structure when apomyoglobin is subjected to a hydrostatic pressure regime. Accordingly, the mechanism of cold denaturation of proteins under high-pressure can be related to the disruption of the hydrogen-bond network of water favoring the coexistence of two states, low-density and high-density water, which directly implies in the formation of a molten globule once the threshold of 200 MPa has been overcome.
当解释蛋白质在高压下变性所涉及的微观机制时,会引发一场令人兴奋的辩论。特别是在涉及疏水性时,这个问题就出现了,因为疏水性本身并不能解释在蛋白质展开过程中测量到的体积变化。在这项工作中,我们通过使用分子动力学模拟和基本动力学分析,研究了当去铁铁蛋白受到静水压力时,溶剂化动力学、体积和水结构之间的关系。因此,在高压下蛋白质的冷变性机制可以与破坏水的氢键网络联系起来,这有利于两种状态(低密度和高密度水)的共存,一旦超过 200 MPa 的阈值,就会直接导致形成一个无规卷曲状态。