Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA.
J Am Soc Mass Spectrom. 2019 Apr;30(4):704-717. doi: 10.1007/s13361-019-02146-1. Epub 2019 Feb 22.
The impact of charging methods on the dissociation behavior of intact proteins in low charge states is investigated using HCD and 193 nm UVPD. Low charge states are produced for seven different proteins using the following four different methods: (1) proton transfer reactions of ions in high charge states generated from conventional denaturing solutions; (2) ESI of proteins in solutions of high ionic strength to enhance retention of folded native-like conformations; (3) ESI of proteins in high pH solutions to limit protonation; and (4) ESI of carbamylated proteins. Comparison of sequence coverages, degree of preferential cleavages, and types and distribution of fragment ions reveals a number of differences in the fragmentation patterns depending on the method used to generate the ions. More notable differences in these metrics are observed upon HCD than upon UVPD. The fragmentation caused by HCD is influenced more significantly by the presence/absence of mobile protons, a factor that modulates the degree of preferential cleavages and net sequence coverages. Carbamylation of the lysines and the N-terminus of the proteins alters the proton mobility by reducing the number of proton-sequestering, highly basic sites as evidenced by decreased preferential fragmentation C-terminal to Asp or N-terminal to Pro upon HCD. UVPD is less dependent on the method used to generate the low charge states and favors non-specific fragmentation, an outcome which is important for obtaining high sequence coverage of intact proteins.
使用 HCD 和 193nmUVPD 研究了不同的荷电状态下,不同的带电方法对完整蛋白质的解离行为的影响。采用以下四种不同方法使七种不同蛋白质处于低电荷状态:(1)高荷电状态下的离子质子转移反应,从常规变性溶液中生成;(2)在高离子强度溶液中进行蛋白质的 ESI,以增强折叠的天然构象的保留;(3)在高 pH 溶液中进行 ESI,以限制质子化;(4)ESI 对碳化蛋白质的作用。序列覆盖率、优先裂解程度以及片段离子的类型和分布的比较表明,根据产生离子的方法,碎片模式存在许多差异。与 UVPD 相比,在 HCD 下,这些指标的差异更为明显。HCD 引起的断裂受到可移动质子的存在/不存在的影响更大,这一因素调节了优先裂解的程度和净序列覆盖率。赖氨酸和蛋白质的 N 末端的碳化通过减少质子隔离的、高度碱性的位点的数量来改变质子的迁移性,这一点可从 HCD 时 C 末端至 Asp 或 N 末端至 Pro 的优先裂解减少得到证实。UVPD 对产生低电荷状态的方法的依赖性较小,并且有利于非特异性断裂,这对于获得完整蛋白质的高序列覆盖率非常重要。