University of Stavanger, 4068, Stavanger, Norway.
Biomech Model Mechanobiol. 2019 Aug;18(4):1047-1078. doi: 10.1007/s10237-019-01128-2. Epub 2019 Feb 22.
It has been demonstrated that interstitial fluid (IF) flow can play a crucial role in tumor cell progression. Swartz and collaborators (Cancer Cell 11: 526-538, Shields et al. 2007) demonstrated that cells that secrete the lymphoid homing chemokines CCL21/CCL19 and express their receptor CCR7 could use flow to bias the secreted chemokine, causing pericellular gradients that stimulate cells to migrate in the direction of the flow. In a further work by Shieh et al. (Cancer Res 71: 790-800, 2011), a synergetic enhancement of tumor cell invasion caused by interaction between tumor cells and fibroblasts in the presence of fluid flow was reported. In the present work, we extend a previous proposed cell-fluid mathematical model for autologous chemotaxis (Chem Eng Sci 191: 268-287, Waldeland and Evje 2018) to also include fibroblasts. This results in a cell-fibroblast-fluid model. Motivated by the experimental findings by Shieh et al, the momentum balance equation for the fibroblasts involves (1) a stress term that accounts for chemotaxis in the direction of positive gradients in secreted growth factor TGF-[Formula: see text]; (2) a fibroblast-ECM interaction term; (3) a cancer cell-fibroblast interaction term. Imposing reasonable simplifying assumptions, we derive an explicit expression for the cancer cell velocity [Formula: see text] that reveals a balance between a fluid-generated stress term, a chemotactic-driven migration term (autologous chemotaxis), and a new term that accounts for the possible mechanical interaction between fibroblasts and cancer cells. Similarly, the model provides an expression for the fibroblast velocity [Formula: see text] as well as the IF velocity [Formula: see text]. The three-phase model is then used for comparison of the simulated output with experimental results to elucidate some of the possible mechanism(s) behind the reported fibroblast-enhanced tumor cell invasion.
已有研究表明,间质液(IF)流在肿瘤细胞的进展中起着至关重要的作用。Swartz 和他的合作者(Cancer Cell 11: 526-538, Shields 等人,2007)证明,分泌淋巴归巢趋化因子 CCL21/CCL19 并表达其受体 CCR7 的细胞可以利用流场来使分泌的趋化因子发生偏移,从而在细胞周围产生浓度梯度,刺激细胞向流场方向迁移。Shieh 等人(Cancer Res 71: 790-800, 2011)的进一步研究报告称,在存在流体流动的情况下,肿瘤细胞与成纤维细胞之间的相互作用会协同增强肿瘤细胞的侵袭。在本工作中,我们扩展了之前提出的用于自体趋化作用的细胞-流体数学模型(Chem Eng Sci 191: 268-287, Waldeland 和 Evje 2018),以纳入成纤维细胞。这导致了一个细胞-成纤维细胞-流体模型。受 Shieh 等人的实验结果的启发,成纤维细胞的动量平衡方程涉及(1)一个应激项,用于解释在分泌的生长因子 TGF-[Formula: see text]的正梯度方向上的趋化作用;(2)一个成纤维细胞-细胞外基质相互作用项;(3)一个肿瘤细胞-成纤维细胞相互作用项。在施加合理的简化假设后,我们推导出了一个癌症细胞速度 [Formula: see text]的显式表达式,该表达式揭示了一个在流体产生的应力项、趋化驱动的迁移项(自体趋化作用)和一个新项之间的平衡,该新项用于解释成纤维细胞和肿瘤细胞之间可能的机械相互作用。类似地,该模型提供了一个成纤维细胞速度 [Formula: see text]和间质液速度 [Formula: see text]的表达式。然后,使用三相模型将模拟输出与实验结果进行比较,以阐明报告的成纤维细胞增强肿瘤细胞侵袭背后的一些可能机制。