Suppr超能文献

用于测量间质液流动对肿瘤细胞侵袭影响的三维细胞培养模型。

Three-dimensional cell culture model for measuring the effects of interstitial fluid flow on tumor cell invasion.

作者信息

Tchafa Alimatou M, Shah Arpit D, Wang Shafei, Duong Melissa T, Shieh Adrian C

机构信息

School of Biomedical Engineering, Science and Health Systems, Drexel University.

出版信息

J Vis Exp. 2012 Jul 25(65):4159. doi: 10.3791/4159.

Abstract

The growth and progression of most solid tumors depend on the initial transformation of the cancer cells and their response to stroma-associated signaling in the tumor microenvironment (1). Previously, research on the tumor microenvironment has focused primarily on tumor-stromal interactions (1-2). However, the tumor microenvironment also includes a variety of biophysical forces, whose effects remain poorly understood. These forces are biomechanical consequences of tumor growth that lead to changes in gene expression, cell division, differentiation and invasion(3). Matrix density (4), stiffness (5-6), and structure (6-7), interstitial fluid pressure (8), and interstitial fluid flow (8) are all altered during cancer progression. Interstitial fluid flow in particular is higher in tumors compared to normal tissues (8-10). The estimated interstitial fluid flow velocities were measured and found to be in the range of 0.1-3 μm s(-1), depending on tumor size and differentiation (9, 11). This is due to elevated interstitial fluid pressure caused by tumor-induced angiogenesis and increased vascular permeability (12). Interstitial fluid flow has been shown to increase invasion of cancer cells (13-14), vascular fibroblasts and smooth muscle cells (15). This invasion may be due to autologous chemotactic gradients created around cells in 3-D (16) or increased matrix metalloproteinase (MMP) expression (15), chemokine secretion and cell adhesion molecule expression (17). However, the mechanism by which cells sense fluid flow is not well understood. In addition to altering tumor cell behavior, interstitial fluid flow modulates the activity of other cells in the tumor microenvironment. It is associated with (a) driving differentiation of fibroblasts into tumor-promoting myofibroblasts (18), (b) transporting of antigens and other soluble factors to lymph nodes (19), and (c) modulating lymphatic endothelial cell morphogenesis (20). The technique presented here imposes interstitial fluid flow on cells in vitro and quantifies its effects on invasion (Figure 1). This method has been published in multiple studies to measure the effects of fluid flow on stromal and cancer cell invasion (13-15, 17). By changing the matrix composition, cell type, and cell concentration, this method can be applied to other diseases and physiological systems to study the effects of interstitial flow on cellular processes such as invasion, differentiation, proliferation, and gene expression.

摘要

大多数实体瘤的生长和进展取决于癌细胞的初始转化及其对肿瘤微环境中基质相关信号的反应(1)。此前,对肿瘤微环境的研究主要集中在肿瘤-基质相互作用上(1-2)。然而,肿瘤微环境还包括多种生物物理力,其作用仍知之甚少。这些力是肿瘤生长的生物力学后果,会导致基因表达、细胞分裂、分化和侵袭发生变化(3)。在癌症进展过程中,基质密度(4)、硬度(5-6)和结构(6-7)、间质液压力(8)以及间质液流动(8)都会发生改变。特别是与正常组织相比,肿瘤中的间质液流动更高(8-10)。测量了估计的间质液流速,发现其范围在0.1-3μm s(-1)之间,这取决于肿瘤大小和分化程度(9, 11)。这是由于肿瘤诱导的血管生成和血管通透性增加导致间质液压力升高所致(12)。间质液流动已被证明会增加癌细胞(13-14)、血管成纤维细胞和平滑肌细胞(15)的侵袭。这种侵袭可能是由于在三维环境中细胞周围形成的自体趋化梯度(16)或基质金属蛋白酶(MMP)表达增加(15)、趋化因子分泌和细胞粘附分子表达(17)。然而,细胞感知液流的机制尚不清楚。除了改变肿瘤细胞行为外,间质液流动还调节肿瘤微环境中其他细胞的活性。它与(a)驱动成纤维细胞分化为促进肿瘤的肌成纤维细胞(18)、(b)将抗原和其他可溶性因子运输到淋巴结(19)以及(c)调节淋巴管内皮细胞形态发生(20)有关。本文介绍的技术在体外对细胞施加间质液流动,并量化其对侵袭的影响(图1)。该方法已在多项研究中发表,用于测量液流对基质细胞和癌细胞侵袭的影响(13-15, 17)。通过改变基质组成、细胞类型和细胞浓度,该方法可应用于其他疾病和生理系统,以研究间质流动对细胞过程如侵袭、分化、增殖和基因表达的影响。

相似文献

2
Regulation of tumor invasion by interstitial fluid flow.
Phys Biol. 2011 Feb;8(1):015012. doi: 10.1088/1478-3975/8/1/015012. Epub 2011 Feb 7.
3
Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts.
Cancer Res. 2011 Feb 1;71(3):790-800. doi: 10.1158/0008-5472.CAN-10-1513. Epub 2011 Jan 18.
8
EMT Transition Alters Interstitial Fluid Flow-Induced Signaling in ERBB2-Positive Breast Cancer Cells.
Mol Cancer Res. 2015 Apr;13(4):755-64. doi: 10.1158/1541-7786.MCR-14-0471. Epub 2015 Jan 7.
9
Biomechanical forces shape the tumor microenvironment.
Ann Biomed Eng. 2011 May;39(5):1379-89. doi: 10.1007/s10439-011-0252-2. Epub 2011 Jan 21.
10
Enhanced cancer cell invasion caused by fibroblasts when fluid flow is present.
Biomech Model Mechanobiol. 2019 Aug;18(4):1047-1078. doi: 10.1007/s10237-019-01128-2. Epub 2019 Feb 22.

引用本文的文献

2
Toward innovative approaches for exploring the mechanically regulated tumor-immune microenvironment.
APL Bioeng. 2024 Feb 21;8(1):011501. doi: 10.1063/5.0183302. eCollection 2024 Mar.
3
Fluid flow to mimic organ function in 3D models.
APL Bioeng. 2023 Aug 4;7(3):031501. doi: 10.1063/5.0146000. eCollection 2023 Sep.
4
A Transwell-Based Vascularized Model to Investigate the Effect of Interstitial Flow on Vasculogenesis.
Bioengineering (Basel). 2022 Nov 8;9(11):668. doi: 10.3390/bioengineering9110668.
5
Absence of integrin α3β1 promotes the progression of HER2-driven breast cancer in vivo.
Breast Cancer Res. 2019 May 17;21(1):63. doi: 10.1186/s13058-019-1146-8.
6
Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer.
J Nanobiotechnology. 2016 Apr 22;14:33. doi: 10.1186/s12951-016-0185-x.
8
Interstitial Fluid Flow Increases Hepatocellular Carcinoma Cell Invasion through CXCR4/CXCL12 and MEK/ERK Signaling.
PLoS One. 2015 Nov 11;10(11):e0142337. doi: 10.1371/journal.pone.0142337. eCollection 2015.
9
Cancer research by means of tissue engineering--is there a rationale?
J Cell Mol Med. 2013 Oct;17(10):1197-206. doi: 10.1111/jcmm.12130. Epub 2013 Oct 1.
10
Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization.
Tissue Eng Part C Methods. 2014 Jan;20(1):64-75. doi: 10.1089/ten.TEC.2012.0731. Epub 2013 Jul 12.

本文引用的文献

1
Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber.
Integr Biol (Camb). 2012 Apr;4(4):401-9. doi: 10.1039/c1ib00128k. Epub 2011 Dec 5.
2
Interstitial flow influences direction of tumor cell migration through competing mechanisms.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11115-20. doi: 10.1073/pnas.1103581108. Epub 2011 Jun 20.
3
Tumor microenvironment and progression.
J Surg Oncol. 2011 May 1;103(6):468-74. doi: 10.1002/jso.21709.
5
Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts.
Cancer Res. 2011 Feb 1;71(3):790-800. doi: 10.1158/0008-5472.CAN-10-1513. Epub 2011 Jan 18.
6
Microenvironmental influences that drive progression from benign breast disease to invasive breast cancer.
J Mammary Gland Biol Neoplasia. 2010 Dec;15(4):389-97. doi: 10.1007/s10911-010-9195-8. Epub 2010 Dec 16.
7
Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models.
Microcirculation. 2010 Apr;17(3):206-25. doi: 10.1111/j.1549-8719.2010.00029.x.
8
Transmural flow modulates cell and fluid transport functions of lymphatic endothelium.
Circ Res. 2010 Mar 19;106(5):920-31. doi: 10.1161/CIRCRESAHA.109.207274. Epub 2010 Feb 4.
9
Matrix crosslinking forces tumor progression by enhancing integrin signaling.
Cell. 2009 Nov 25;139(5):891-906. doi: 10.1016/j.cell.2009.10.027.
10
Mast cell-derived particles deliver peripheral signals to remote lymph nodes.
J Exp Med. 2009 Oct 26;206(11):2455-67. doi: 10.1084/jem.20090805. Epub 2009 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验