Suppr超能文献

使用电子顺磁共振波谱法对苯乙烯-马来酸共聚物-脂质纳米粒子(SMALPs)进行结构表征。

Structural characterization of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using EPR spectroscopy.

机构信息

Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA.

Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA.

出版信息

Chem Phys Lipids. 2019 May;220:6-13. doi: 10.1016/j.chemphyslip.2019.02.003. Epub 2019 Feb 20.

Abstract

Spectroscopic studies of membrane proteins (MPs) are challenging due to difficulties in preparing homogenous and functional lipid membrane mimetic systems into which membrane proteins can properly fold and function. It has recently been shown that styrene-maleic acid (SMA) copolymers act as a macromolecular surfactant and therefore facilitate the formation of disk-shaped lipid bilayer nanoparticles (styrene-maleic acid copolymer-lipid nanoparticles (SMALPs)) that retain structural characteristics of native lipid membranes. We have previously reported controlled synthesis of SMA block copolymers using reversible addition-fragmentation chain transfer (RAFT) polymerization, and that alteration of the weight ratio of styrene to maleic acid affects nanoparticle size. RAFT-synthesis offers superior control over SMA polymer architecture compared to conventional radical polymerization techniques used for commercially available SMA. However, the interactions between the lipid bilayer and the solubilized RAFT-synthesized SMA polymer are currently not fully understood. In this study, EPR spectroscopy was used to detect the perturbation on the acyl chain upon introduction of the RAFT-synthesized SMA polymer by attaching PC-based nitroxide spin labels to the 5, 12, and 16 positions along the acyl chain of the lipid bilayer. EPR spectra showed high rigidity at the 12 position compared to the other two regions, displaying similar qualities to commercially available polymers synthesized via conventional methods. In addition, central EPR linewidths and correlation time data were obtained that are consistent with previous findings.

摘要

由于难以制备均质且具有功能性的类脂膜模拟系统,使得膜蛋白(MPs)的光谱研究具有挑战性,而 MPs 只有在这些系统中才能正确折叠和发挥功能。最近的研究表明,苯乙烯-马来酸(SMA)共聚物可作为一种大分子表面活性剂,从而有利于形成盘状双层类脂纳米颗粒(苯乙烯-马来酸共聚物-类脂纳米颗粒(SMALPs)),这些纳米颗粒保留了天然类脂膜的结构特征。我们之前曾报道过使用可逆加成-断裂链转移(RAFT)聚合来控制 SMA 嵌段共聚物的合成,并且苯乙烯与马来酸的重量比的改变会影响纳米颗粒的尺寸。与用于商业 SMA 的常规自由基聚合技术相比,RAFT 合成可提供对 SMA 聚合物结构的更好控制。然而,目前尚不完全了解双层类脂与溶解的 RAFT 合成 SMA 聚合物之间的相互作用。在这项研究中,通过将基于 PC 的氮氧自由基自旋标记物连接到双层类脂的酰基链的 5、12 和 16 位置,使用电子顺磁共振(EPR)光谱检测引入 RAFT 合成 SMA 聚合物后酰基链的扰动。EPR 光谱显示,与其他两个区域相比,12 位的刚性较高,显示出与通过传统方法合成的商业聚合物相似的性质。此外,获得了与先前发现一致的中心 EPR 线宽和相关时间数据。

相似文献

1
Structural characterization of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using EPR spectroscopy.
Chem Phys Lipids. 2019 May;220:6-13. doi: 10.1016/j.chemphyslip.2019.02.003. Epub 2019 Feb 20.
2
Tuning the size of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using RAFT polymerization for biophysical studies.
Biochim Biophys Acta. 2016 Nov;1858(11):2931-2939. doi: 10.1016/j.bbamem.2016.08.004. Epub 2016 Aug 15.
4
Lipid dynamics in nanoparticles formed by maleic acid-containing copolymers: EPR spectroscopy and molecular dynamics simulations.
Biochim Biophys Acta Biomembr. 2020 May 1;1862(5):183207. doi: 10.1016/j.bbamem.2020.183207. Epub 2020 Jan 25.
5
Formation of styrene maleic acid lipid nanoparticles (SMALPs) using SMA thin film on a substrate.
Anal Biochem. 2022 Jun 15;647:114692. doi: 10.1016/j.ab.2022.114692. Epub 2022 Apr 21.
6
Styrene/Maleic Acid Copolymers Form SMALPs by Pulling Lipid Patches out of the Lipid Bilayer.
Langmuir. 2019 Mar 12;35(10):3748-3758. doi: 10.1021/acs.langmuir.8b03978. Epub 2019 Feb 27.
7
Influence of Poly(styrene- co-maleic acid) Copolymer Structure on the Properties and Self-Assembly of SMALP Nanodiscs.
Biomacromolecules. 2018 Mar 12;19(3):761-772. doi: 10.1021/acs.biomac.7b01539. Epub 2018 Jan 16.
9
Simple Derivatization of RAFT-Synthesized Styrene-Maleic Anhydride Copolymers for Lipid Disk Formulations.
Biomacromolecules. 2020 Mar 9;21(3):1274-1284. doi: 10.1021/acs.biomac.0c00041. Epub 2020 Feb 27.
10
The use of styrene-maleic acid copolymer (SMA) for studies on T cell membrane rafts.
Biochim Biophys Acta Biomembr. 2019 Jan;1861(1):130-141. doi: 10.1016/j.bbamem.2018.08.006. Epub 2018 Aug 14.

引用本文的文献

1
Examining the Thermotropic properties of Large, Circularized Nanodiscs.
bioRxiv. 2025 Apr 10:2025.04.07.647641. doi: 10.1101/2025.04.07.647641.
4
Vinyl Ether Maleic Acid Polymers: Tunable Polymers for Self-Assembled Lipid Nanodiscs and Environments for Membrane Proteins.
Biomacromolecules. 2024 Oct 14;25(10):6611-6623. doi: 10.1021/acs.biomac.4c00772. Epub 2024 Sep 16.
7
Kinetic analysis of antibody binding to integral membrane proteins stabilized in SMALPs.
BBA Adv. 2021 Aug 5;1:100022. doi: 10.1016/j.bbadva.2021.100022. eCollection 2021.
8
Perspective on the Effect of Membrane Mimetics on Dynamic Properties of Integral Membrane Proteins.
J Phys Chem B. 2023 May 4;127(17):3757-3765. doi: 10.1021/acs.jpcb.2c07324. Epub 2023 Apr 20.

本文引用的文献

1
Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins.
Nano Res. 2015 Mar;8(3):774-789. doi: 10.1007/s12274-014-0560-6. Epub 2014 Oct 23.
3
Molecular Mechanism of Lipid Nanodisk Formation by Styrene-Maleic Acid Copolymers.
Biophys J. 2018 Aug 7;115(3):494-502. doi: 10.1016/j.bpj.2018.06.018. Epub 2018 Jun 20.
4
Membrane Solubilization by Styrene-Maleic Acid Copolymers: Delineating the Role of Polymer Length.
Biophys J. 2018 Jul 3;115(1):129-138. doi: 10.1016/j.bpj.2018.05.032.
5
Site-Directed Spin Labeling EPR for Studying Membrane Proteins.
Biomed Res Int. 2018 Jan 23;2018:3248289. doi: 10.1155/2018/3248289. eCollection 2018.
6
Influence of Poly(styrene- co-maleic acid) Copolymer Structure on the Properties and Self-Assembly of SMALP Nanodiscs.
Biomacromolecules. 2018 Mar 12;19(3):761-772. doi: 10.1021/acs.biomac.7b01539. Epub 2018 Jan 16.
7
Controlling Styrene Maleic Acid Lipid Particles through RAFT.
Biomacromolecules. 2017 Nov 13;18(11):3706-3713. doi: 10.1021/acs.biomac.7b01136. Epub 2017 Oct 9.
9
Characterization of KCNE1 inside Lipodisq Nanoparticles for EPR Spectroscopic Studies of Membrane Proteins.
J Phys Chem B. 2017 Jun 1;121(21):5312-5321. doi: 10.1021/acs.jpcb.7b01705. Epub 2017 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验