Suppr超能文献

采用 RAFT 聚合技术对苯乙烯-马来酸共聚物-脂质纳米粒子(SMALPs)进行结构表征,用于膜蛋白光谱研究。

Characterizing the structure of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using RAFT polymerization for membrane protein spectroscopic studies.

机构信息

Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH, 45056, United States.

Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH, 45056, United States.

出版信息

Chem Phys Lipids. 2019 Jan;218:65-72. doi: 10.1016/j.chemphyslip.2018.12.002. Epub 2018 Dec 4.

Abstract

Membrane proteins play an important role in maintaining the structure and physiology of an organism. Despite their significance, spectroscopic studies involving membrane proteins remain challenging due to the difficulties in mimicking their native lipid bilayer environment. Membrane mimetic systems such as detergent micelles, liposomes, bicelles, nanodiscs, lipodisqs have improved the solubility and folding properties of the membrane proteins for structural studies, however, each mimetic system suffers from its own limitations. In this study, using three different lipid environments, vesicles were titrated with styrene-maleic acid (StMA) copolymer leading to a homogeneous SMALP system (∼10 nm) at a weight ratio of 1:1.5 (vesicle: StMA solution). A combination of Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) was used to characterize these SMALPs. We used a controlled synthesis mechanism to synthesize StMA based block copolymers called reversible addition-fragmentation chain transfer polymerization (RAFT) SMALPs. Incorporation of the Voltage Sensor Domain of KCNQ1 (Q1-VSD) into RAFT SMALPs indicates that this is a promising application of this system to study membrane proteins using different biophysical techniques. V165C in Q1-VSD corresponding to the hydrophobic region was incorporated into the SMALP system. Continuous Wave-Electron Paramagnetic Resonance (CW-EPR) line shape analysis showed line shape broadening, exposing a lower rigid component and a faster component of the spin label.

摘要

膜蛋白在维持生物体的结构和生理功能方面发挥着重要作用。尽管它们意义重大,但涉及膜蛋白的光谱研究仍然具有挑战性,因为难以模拟其天然的脂质双层环境。膜类似物系统,如去污剂胶束、脂质体、双分子层脂、纳米盘和脂质体,提高了膜蛋白的溶解度和折叠性质,从而有利于结构研究,但每种类似物系统都存在自身的局限性。在这项研究中,使用三种不同的脂质环境,通过逐步滴定法将苯乙烯-马来酸共聚物(StMA)与囊泡混合,在重量比为 1:1.5(囊泡:StMA 溶液)时得到均匀的 SMALP 体系(∼10nm)。动态光散射(DLS)和透射电子显微镜(TEM)的组合用于对这些 SMALPs 进行表征。我们使用受控合成机制合成了基于苯乙烯-马来酸共聚物的嵌段共聚物,称为可逆加成-断裂链转移聚合(RAFT)SMALPs。将 KCNQ1 的电压传感器结构域(Q1-VSD)整合到 RAFT SMALPs 中表明,这是该系统在使用不同生物物理技术研究膜蛋白方面的一个很有前景的应用。Q1-VSD 中对应于疏水区的 V165C 被整合到 SMALP 系统中。连续波电子顺磁共振(CW-EPR)线宽分析显示出线宽变宽,暴露出较低的刚性成分和更快的自旋标记成分。

相似文献

5
The use of styrene-maleic acid copolymer (SMA) for studies on T cell membrane rafts.用苯乙烯-马来酸共聚物(SMA)研究 T 细胞膜筏。
Biochim Biophys Acta Biomembr. 2019 Jan;1861(1):130-141. doi: 10.1016/j.bbamem.2018.08.006. Epub 2018 Aug 14.

引用本文的文献

4
Characterization of nanodisc-forming peptides for membrane protein studies.用于膜蛋白研究的纳米盘形成肽的特性。
J Colloid Interface Sci. 2024 Jan;653(Pt B):1402-1414. doi: 10.1016/j.jcis.2023.09.162. Epub 2023 Sep 29.
10
Purification and membrane interactions of human KCNQ1 potassium ion channel.人源 KCNQ1 钾离子通道的纯化及其与膜的相互作用
Biochim Biophys Acta Biomembr. 2022 Nov 1;1864(11):184010. doi: 10.1016/j.bbamem.2022.184010. Epub 2022 Jul 21.

本文引用的文献

2
Formation of pH-Resistant Monodispersed Polymer-Lipid Nanodiscs.形成 pH 耐受的单分散聚合物-脂质纳米盘。
Angew Chem Int Ed Engl. 2018 Jan 26;57(5):1342-1345. doi: 10.1002/anie.201712017. Epub 2018 Jan 8.
3
Controlling Styrene Maleic Acid Lipid Particles through RAFT.通过 RAFT 控制苯乙烯马来酸脂质颗粒。
Biomacromolecules. 2017 Nov 13;18(11):3706-3713. doi: 10.1021/acs.biomac.7b01136. Epub 2017 Oct 9.
7
Drugging Membrane Protein Interactions.药物作用于膜蛋白相互作用
Annu Rev Biomed Eng. 2016 Jul 11;18:51-76. doi: 10.1146/annurev-bioeng-092115-025322. Epub 2016 Feb 5.
8
Properties of protein drug target classes.蛋白质药物靶点类别的特性。
PLoS One. 2015 Mar 30;10(3):e0117955. doi: 10.1371/journal.pone.0117955. eCollection 2015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验