Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH, 45056, United States.
Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH, 45056, United States.
Chem Phys Lipids. 2019 Jan;218:65-72. doi: 10.1016/j.chemphyslip.2018.12.002. Epub 2018 Dec 4.
Membrane proteins play an important role in maintaining the structure and physiology of an organism. Despite their significance, spectroscopic studies involving membrane proteins remain challenging due to the difficulties in mimicking their native lipid bilayer environment. Membrane mimetic systems such as detergent micelles, liposomes, bicelles, nanodiscs, lipodisqs have improved the solubility and folding properties of the membrane proteins for structural studies, however, each mimetic system suffers from its own limitations. In this study, using three different lipid environments, vesicles were titrated with styrene-maleic acid (StMA) copolymer leading to a homogeneous SMALP system (∼10 nm) at a weight ratio of 1:1.5 (vesicle: StMA solution). A combination of Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) was used to characterize these SMALPs. We used a controlled synthesis mechanism to synthesize StMA based block copolymers called reversible addition-fragmentation chain transfer polymerization (RAFT) SMALPs. Incorporation of the Voltage Sensor Domain of KCNQ1 (Q1-VSD) into RAFT SMALPs indicates that this is a promising application of this system to study membrane proteins using different biophysical techniques. V165C in Q1-VSD corresponding to the hydrophobic region was incorporated into the SMALP system. Continuous Wave-Electron Paramagnetic Resonance (CW-EPR) line shape analysis showed line shape broadening, exposing a lower rigid component and a faster component of the spin label.
膜蛋白在维持生物体的结构和生理功能方面发挥着重要作用。尽管它们意义重大,但涉及膜蛋白的光谱研究仍然具有挑战性,因为难以模拟其天然的脂质双层环境。膜类似物系统,如去污剂胶束、脂质体、双分子层脂、纳米盘和脂质体,提高了膜蛋白的溶解度和折叠性质,从而有利于结构研究,但每种类似物系统都存在自身的局限性。在这项研究中,使用三种不同的脂质环境,通过逐步滴定法将苯乙烯-马来酸共聚物(StMA)与囊泡混合,在重量比为 1:1.5(囊泡:StMA 溶液)时得到均匀的 SMALP 体系(∼10nm)。动态光散射(DLS)和透射电子显微镜(TEM)的组合用于对这些 SMALPs 进行表征。我们使用受控合成机制合成了基于苯乙烯-马来酸共聚物的嵌段共聚物,称为可逆加成-断裂链转移聚合(RAFT)SMALPs。将 KCNQ1 的电压传感器结构域(Q1-VSD)整合到 RAFT SMALPs 中表明,这是该系统在使用不同生物物理技术研究膜蛋白方面的一个很有前景的应用。Q1-VSD 中对应于疏水区的 V165C 被整合到 SMALP 系统中。连续波电子顺磁共振(CW-EPR)线宽分析显示出线宽变宽,暴露出较低的刚性成分和更快的自旋标记成分。