Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy.
Amino Acids. 2019 Apr;51(4):579-587. doi: 10.1007/s00726-019-02710-9. Epub 2019 Feb 23.
The eukaryotic FF-ATP synthase/hydrolase activity is coupled to H translocation through the inner mitochondrial membrane. According to a recent model, two asymmetric H half-channels in the a subunit translate a transmembrane vertical H flux into the rotor rotation required for ATP synthesis/hydrolysis. Along the H pathway, conserved aminoacid residues, mainly glutamate, address H both in the downhill and uphill transmembrane movements to synthesize or hydrolyze ATP, respectively. Point mutations responsible for these aminoacid changes affect H transfer through the membrane and, as a cascade, result in mitochondrial dysfunctions and related pathologies. The involvement of specific aminoacid residues in driving H along their transmembrane pathway within a subunit, sustained by the literature and calculated data, leads to depict a model consistent with some mitochondrial disorders.
真核生物 FF-ATP 合酶/水解酶活性通过线粒体内膜与 H 转运相偶联。根据最近的模型,a 亚基中的两个不对称 H 半通道将跨膜垂直 H 通量转化为合成/水解 ATP 所需的转子旋转。在 H 途径中,保守的氨基酸残基(主要是谷氨酸)在 H 的顺式和反式跨膜运动中分别与 H 结合,以合成或水解 ATP。导致这些氨基酸变化的点突变会影响 H 在膜中的转移,并且作为级联反应,导致线粒体功能障碍和相关疾病。文献和计算数据支持特定氨基酸残基在 a 亚基内沿其跨膜途径驱动 H 的作用,这导致了与一些线粒体疾病一致的模型。