Suppr超能文献

耐药结核分枝杆菌(MDR-MTB)中与外排泵相关的药物结合蛋白在进化过程中的改变:基于计算机模拟方法揭示的线索。

Modification of drug-binding proteins associated with the efflux pump in MDR-MTB in course of evolution: an unraveled clue based on in silico approach.

机构信息

Post Graduate Department of Biotechnology, Molecular informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, India.

Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.

出版信息

J Antibiot (Tokyo). 2019 May;72(5):282-290. doi: 10.1038/s41429-019-0146-3. Epub 2019 Feb 25.

Abstract

Mycobacterium tuberculosis (MTB) is commonly resistant to various drugs. Multidrug-resistant tuberculosis (MDR-MTB) is mostly caused by mutation in drug-binding proteins and protein folding. The aim of the study was to identify the pattern of mutations in embC, inhA and rpoB proteins and investigate its interactions with available drug such as rifampicin, ethambutol and isoniazid, using a computer docking method. The evolution of drugs resistant mechanisms of MTB was analyzed using an in silico approach. The model proteins were considered to be in a protein-protein interaction network among the twenty transmembrane proteins. The changes in structural conformation may describe the significance of the proton pumps system. The docking analysis revealed that unlike isoniazid, both rifampicin and ethambutol, bound to the same residues in mutant and wild forms. Moreover, multiple-sequence alignment (MSA) showed mutational hotspot regions where the substitution of amino acids in these three target proteins was position specific under stress. The molecular basis of drug resistance in M. tuberculosis can be represented by a protein network which is a well-regulated system for efflux pump activation by popularly used drugs. Ethambutol and rifampicin form stable complexes with EmbC and RpoB, respectively. Isoniazid shows no binding affinity to mutant InhA (2015). Analysis of the cellular network associated with drug regulatory proteins suggest that mmpl3, Rv1634 and Rv1258c play a major role by altering the protein pump to remove the active drug compounds from the bacterial cell.

摘要

结核分枝杆菌(MTB)通常对各种药物具有耐药性。耐多药结核病(MDR-MTB)主要是由于药物结合蛋白和蛋白质折叠的突变引起的。本研究的目的是使用计算机对接方法鉴定 embC、inhA 和 rpoB 蛋白中的突变模式,并研究其与利福平、乙胺丁醇和异烟肼等现有药物的相互作用。使用计算机对接方法鉴定 embC、inhA 和 rpoB 蛋白中的突变模式,并研究其与利福平、乙胺丁醇和异烟肼等现有药物的相互作用。采用计算机模拟方法分析 MTB 耐药机制的进化。模型蛋白被认为是 20 个跨膜蛋白之间的蛋白质-蛋白质相互作用网络的一部分。结构构象的变化可以描述质子泵系统的重要性。对接分析表明,与异烟肼不同,利福平与乙胺丁醇都与突变体和野生型中的相同残基结合。此外,多重序列比对(MSA)显示突变热点区域,在这些三个靶蛋白中,氨基酸的取代是特定位置的,在应激下。结核分枝杆菌的药物耐药性的分子基础可以用一个蛋白质网络来表示,该网络是一个由常用药物激活外排泵的良好调节系统。乙胺丁醇和利福平分别与 embC 和 rpoB 形成稳定的复合物。异烟肼与突变 inhA(2015)无结合亲和力。与药物调节蛋白相关的细胞网络分析表明,mmpl3、Rv1634 和 Rv1258c 通过改变蛋白质泵,将活性药物化合物从细菌细胞中排出,从而发挥主要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验