Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.
VIB Center for Plant Systems Biology, Gent, Belgium.
Plant Biotechnol J. 2019 Sep;17(9):1760-1769. doi: 10.1111/pbi.13098. Epub 2019 Mar 5.
Plant expression systems have proven to be exceptional in producing high-value complex polymeric proteins such as secretory IgAs (SIgAs). However, polymeric protein production requires the expression of multiple genes, which can be transformed as single or multiple T-DNA units to generate stable transgenic plant lines. Here, we evaluated four strategies to stably transform multiple genes and to obtain high expression of all components. Using the in-seed expression of a simplified secretory IgA (sSIgA) as a reference molecule, we conclude that it is better to spread the genes over two T-DNAs than to contain them in a single T-DNA, because of the presence of homologous recombination events and gene silencing. These T-DNAs can be cotransformed to obtain transgenic plants in one transformation step. However, if time permits, more transformants with high production levels of the polymeric protein can be obtained either by sequential transformation or by in-parallel transformation followed by crossing of transformants independently selected for excellent expression of the genes in each T-DNA.
植物表达系统在生产高价值的复杂聚合蛋白方面表现出色,如分泌型 IgA(sIgA)。然而,聚合蛋白的生产需要表达多个基因,可以将其转化为单个或多个 T-DNA 单元,以生成稳定的转基因植物系。在这里,我们评估了四种策略来稳定转化多个基因并获得所有成分的高表达。使用简化分泌型 IgA(sIgA)的种子内表达作为参考分子,我们得出结论,将基因分散在两个 T-DNA 上比将它们包含在单个 T-DNA 中更好,因为存在同源重组事件和基因沉默。这些 T-DNA 可以共转化以在一个转化步骤中获得转基因植物。然而,如果时间允许,可以通过顺序转化或通过平行转化后独立交叉选择每个 T-DNA 中基因表达优异的转化体来获得具有更高聚合蛋白生产水平的更多转化体。