Suppr超能文献

具有物理和地理约束的移动站群任务感知运动规划(MAP)框架

Mission Aware Motion Planning (MAP) Framework With Physical and Geographical Constraints for a Swarm of Mobile Stations.

作者信息

Harikumar K, Senthilnath J, Sundaram Suresh

出版信息

IEEE Trans Cybern. 2020 Mar;50(3):1209-1219. doi: 10.1109/TCYB.2019.2897027. Epub 2019 Feb 25.

Abstract

In this paper, we propose a mission aware motion planning (MAP) framework for a swarm of autonomous unmanned ground vehicles (UGVs) or mobile stations in an uncertain environment for efficient supply of resources/services to unmanned aerial vehicles (UAVs) performing a specific mission. The MAP framework consists of two levels, namely, centralized mission planning and decentralized motion planning. On the first level, the centralized mission planning algorithm estimates the density of UAV in a given environment for determining the number of UGVs and their initial operating location. In the subsequent level, a decentralized motion planning algorithm which provides a closed-form expression for velocity command using adaptive density estimation has been proposed. Further, the physical and geographical constraints are integrated into motion planning. A Monte-Carlo simulation is performed to evaluate the advantages of the MAP over distributed stationary stations (DSSs) often used in the literature. The obtained results clearly indicate that in comparison with DSS, MAP reduces the average distance traveled by UAVs about 20%, reduces the loss of mission time by 90 s per interruption and power loss by 3 dB.

摘要

在本文中,我们为一群自主无人地面车辆(UGV)或移动站提出了一种任务感知运动规划(MAP)框架,该框架适用于不确定环境,用于向执行特定任务的无人机(UAV)高效供应资源/服务。MAP框架由两个层次组成,即集中式任务规划和分散式运动规划。在第一个层次上,集中式任务规划算法估计给定环境中无人机的密度,以确定无人地面车辆的数量及其初始运行位置。在随后的层次上,提出了一种分散式运动规划算法,该算法使用自适应密度估计为速度指令提供了一个闭式表达式。此外,物理和地理约束被整合到运动规划中。进行了蒙特卡洛模拟,以评估MAP相对于文献中常用的分布式固定站(DSS)的优势。获得的结果清楚地表明,与DSS相比,MAP使无人机的平均飞行距离减少了约20%,每次中断使任务时间损失减少了90秒,功率损失减少了3分贝。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验