Suppr超能文献

在疾病早期,高血压型常染色体显性多囊肾病患者的血浆代谢物和脂质与肾功能和肾脏体积相关。

Plasma metabolites and lipids associate with kidney function and kidney volume in hypertensive ADPKD patients early in the disease course.

机构信息

Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA.

Division of Nephrology, Department of Internal Medicine, University of California, Genome and Biomedical Sciences Building, Room 6311, 451 Health Sciences Dr, Davis, CA, 95616, USA.

出版信息

BMC Nephrol. 2019 Feb 25;20(1):66. doi: 10.1186/s12882-019-1249-6.

Abstract

BACKGROUND

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and is characterized by gradual cyst growth and expansion, increase in kidney volume with an ultimate decline in kidney function leading to end stage renal disease (ESRD). Given the decades long period of stable kidney function while cyst growth occurs, it is important to identify those patients who will progress to ESRD. Recent data from our and other laboratories have demonstrated that metabolic reprogramming may play a key role in cystic epithelial proliferation resulting in cyst growth in ADPKD. Height corrected total kidney volume (ht-TKV) accurately reflects cyst burden and predicts future loss of kidney function. We hypothesize that specific plasma metabolites will correlate with eGFR and ht-TKV early in ADPKD, both predictors of disease progression, potentially indicative of early physiologic derangements of renal disease severity.

METHODS

To investigate the predictive role of plasma metabolites on eGFR and/or ht-TKV, we used a non-targeted GC-TOF/MS-based metabolomics approach on hypertensive ADPKD patients in the early course of their disease. Patient data was obtained from the HALT-A randomized clinical trial at baseline including estimated glomerular filtration rate (eGFR) and measured ht-TKV. To identify individual metabolites whose intensities are significantly correlated with eGFR and ht-TKV, association analyses were performed using linear regression with each metabolite signal level as the primary predictor variable and baseline eGFR and ht-TKV as the continuous outcomes of interest, while adjusting for covariates. Significance was determined by Storey's false discovery rate (FDR) q-values to correct for multiple testing.

RESULTS

Twelve metabolites significantly correlated with eGFR and two triglycerides significantly correlated with baseline ht-TKV at FDR q-value < 0.05. Specific significant metabolites, including pseudo-uridine, indole-3-lactate, uric acid, isothreonic acid, and creatinine, have been previously shown to accumulate in plasma and/or urine in both diabetic and cystic renal diseases with advanced renal insufficiency.

CONCLUSIONS

This study identifies metabolic derangements in early ADPKD which may be prognostic for ADPKD disease progression.

CLINICAL TRIAL

HALT Progression of Polycystic Kidney Disease (HALT PKD) Study A; Clinical www.clinicaltrials.gov identifier: NCT00283686; first posted January 30, 2006, last update posted March 19, 2015.

摘要

背景

常染色体显性多囊肾病(ADPKD)是最常见的遗传性肾病,其特征为囊肿逐渐生长和扩张,肾脏体积增加,最终导致肾功能衰竭进入终末期肾病(ESRD)。鉴于囊肿生长期间肾功能稳定的数十年时间,确定哪些患者将进展为 ESRD 非常重要。最近来自我们和其他实验室的数据表明,代谢重编程可能在 ADPKD 中囊性上皮细胞增殖导致囊肿生长中起关键作用。身高校正的总肾体积(ht-TKV)准确反映囊肿负担并预测未来的肾功能丧失。我们假设在 ADPKD 的早期,特定的血浆代谢物将与 eGFR 和 ht-TKV 相关,这两个都是疾病进展的预测指标,可能表明肾脏疾病严重程度的早期生理紊乱。

方法

为了研究血浆代谢物对 eGFR 和/或 ht-TKV 的预测作用,我们在疾病早期使用基于非靶向 GC-TOF/MS 的代谢组学方法对高血压 ADPKD 患者进行了研究。患者数据来自 HALT-A 随机临床试验的基线,包括估计肾小球滤过率(eGFR)和测量的 ht-TKV。为了确定与 eGFR 和 ht-TKV 显著相关的个体代谢物,我们使用线性回归进行关联分析,将每个代谢物信号水平作为主要预测变量,将基线 eGFR 和 ht-TKV 作为感兴趣的连续结果,同时调整协变量。通过 Storey 的错误发现率(FDR)q 值确定显著性,以校正多重检验。

结果

在 FDR q 值<0.05 时,有 12 种代谢物与 eGFR 显著相关,两种甘油三酯与基线 ht-TKV 显著相关。特定的显著代谢物,包括假尿嘧啶、吲哚-3-乳酸、尿酸、异苏氨酸和肌酸,已在糖尿病和囊性肾病合并肾功能衰竭中在血浆和/或尿液中积累。

结论

本研究确定了早期 ADPKD 中的代谢紊乱,这可能对 ADPKD 疾病进展具有预后意义。

临床试验

HALT 多囊肾病进展研究 A(HALT PKD);临床 www.clinicaltrials.gov 标识符:NCT00283686;首次发布于 2006 年 1 月 30 日,最后更新于 2015 年 3 月 19 日。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa1/6388487/985a74390982/12882_2019_1249_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验