Suppr超能文献

mRNA 编码的 ZFN、TALEN 和 Cas9 的基因组编辑。

Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9.

机构信息

Department of Urology, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Medical Research Institute, Wuhan University, 430071 Wuhan, China.

Medical Research Institute, Wuhan University, 430071 Wuhan, China.

出版信息

Mol Ther. 2019 Apr 10;27(4):735-746. doi: 10.1016/j.ymthe.2019.01.014. Epub 2019 Jan 25.

Abstract

Genome-editing technologies based on programmable nucleases have significantly broadened our ability to make precise and direct changes in the genomic DNA of various species, including human cells. Delivery of programmable nucleases into the target tissue or cell is one of the pressing challenges in transforming the technology into medicine. In vitro-transcribed (IVT) mRNA-mediated delivery of nucleases has several advantages, such as transient expression with efficient in vivo and in vitro delivery, no genomic integration, a potentially low off-target rate, and high editing efficiency. This review focuses on key barriers related to IVT mRNA delivery, on developed modes of delivery, and on the application and future prospects of mRNA encoding nuclease-mediated genome editing in research and clinical trials.

摘要

基于可编程核酸酶的基因组编辑技术显著拓宽了我们在各种物种(包括人类细胞)的基因组 DNA 上进行精确和直接修饰的能力。将可编程核酸酶递送到靶组织或细胞是将该技术转化为医学应用的紧迫挑战之一。体外转录 (IVT) mRNA 介导的核酸酶递送具有许多优点,例如瞬时表达,具有高效的体内和体外递送效率、无基因组整合、潜在的低脱靶率和高效率的编辑。本综述重点介绍了与 IVT mRNA 递送相关的关键障碍、已开发的递送方式,以及 mRNA 编码核酸酶介导的基因组编辑在研究和临床试验中的应用和未来前景。

相似文献

1
Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9.
Mol Ther. 2019 Apr 10;27(4):735-746. doi: 10.1016/j.ymthe.2019.01.014. Epub 2019 Jan 25.
2
Genome Editing of Silkworms.
Methods Mol Biol. 2023;2637:359-374. doi: 10.1007/978-1-0716-3016-7_27.
3
Application and development of genome editing technologies to the Solanaceae plants.
Plant Physiol Biochem. 2018 Oct;131:37-46. doi: 10.1016/j.plaphy.2018.02.019. Epub 2018 Mar 2.
4
Gene editing and CRISPR in the clinic: current and future perspectives.
Biosci Rep. 2020 Apr 30;40(4). doi: 10.1042/BSR20200127.
5
In Vivo Genome Editing as a Therapeutic Approach.
Int J Mol Sci. 2018 Sep 12;19(9):2721. doi: 10.3390/ijms19092721.
6
Manufacturing and Delivering Genome-Editing Proteins.
Methods Mol Biol. 2018;1867:253-273. doi: 10.1007/978-1-4939-8799-3_19.
7
Genome Editing of Silkworms.
Methods Mol Biol. 2017;1630:205-218. doi: 10.1007/978-1-4939-7128-2_17.
8
Basics of genome editing technology and its application in livestock species.
Reprod Domest Anim. 2017 Aug;52 Suppl 3:4-13. doi: 10.1111/rda.13012.
9
Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals.
Vet Res Commun. 2023 Jan;47(1):1-16. doi: 10.1007/s11259-022-09967-8. Epub 2022 Jul 4.
10
Construction and Evaluation of Zinc Finger Nucleases.
Methods Mol Biol. 2023;2637:1-25. doi: 10.1007/978-1-0716-3016-7_1.

引用本文的文献

1
Exploring the Potential and Advancements of Circular RNA Therapeutics.
Exploration (Beijing). 2025 May 1;5(4):e20240044. doi: 10.1002/EXP.20240044. eCollection 2025 Aug.
3
Recent Advances in mRNA Delivery Systems for Cancer Therapy.
Adv Sci (Weinh). 2025 Aug;12(29):e17571. doi: 10.1002/advs.202417571. Epub 2025 May 20.
4
Quadruple adenine base-edited allogeneic CAR T cells outperform CRISPR/Cas9 nuclease-engineered T cells.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2427216122. doi: 10.1073/pnas.2427216122. Epub 2025 May 5.
5
Current Analytical Strategies for mRNA-Based Therapeutics.
Molecules. 2025 Apr 6;30(7):1629. doi: 10.3390/molecules30071629.
6
Molecular breeding of tomato: Advances and challenges.
J Integr Plant Biol. 2025 Mar;67(3):669-721. doi: 10.1111/jipb.13879. Epub 2025 Mar 18.
7
Bacterial DNA methylases as novel molecular and synthetic biology tools: recent developments.
Appl Microbiol Biotechnol. 2025 Mar 6;109(1):60. doi: 10.1007/s00253-025-13442-0.
8
Advancing Precision Medicine: Recent Innovations in Gene Editing Technologies.
Adv Sci (Weinh). 2025 Apr;12(14):e2410237. doi: 10.1002/advs.202410237. Epub 2025 Mar 2.
9
CRISPR-Cas9 Gene Therapy: Non-Viral Delivery and Stimuli-Responsive Nanoformulations.
Molecules. 2025 Jan 24;30(3):542. doi: 10.3390/molecules30030542.
10
Advancing Therapeutic Strategies with Polymeric Drug Conjugates for Nucleic Acid Delivery and Treatment.
Int J Nanomedicine. 2025 Jan 4;20:25-52. doi: 10.2147/IJN.S429279. eCollection 2025.

本文引用的文献

1
The great escape: how cationic polyplexes overcome the endosomal barrier.
J Mater Chem B. 2018 Nov 21;6(43):6904-6918. doi: 10.1039/c8tb00967h. Epub 2018 Sep 26.
2
Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA.
Nat Biomed Eng. 2018 Nov;2(11):850-864. doi: 10.1038/s41551-018-0284-0. Epub 2018 Sep 17.
3
Cell engineering with microfluidic squeezing preserves functionality of primary immune cells in vivo.
Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10907-E10914. doi: 10.1073/pnas.1809671115. Epub 2018 Oct 31.
4
High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population.
Nat Med. 2019 Feb;25(2):242-248. doi: 10.1038/s41591-018-0204-6. Epub 2018 Oct 29.
6
Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d.
Cell. 2018 Sep 20;175(1):212-223.e17. doi: 10.1016/j.cell.2018.09.001.
7
Engineered CRISPR-Cas9 nuclease with expanded targeting space.
Science. 2018 Sep 21;361(6408):1259-1262. doi: 10.1126/science.aas9129. Epub 2018 Aug 30.
8
FDA approves patisiran to treat hereditary transthyretin amyloidosis.
Nat Rev Neurol. 2018 Oct;14(10):570. doi: 10.1038/s41582-018-0065-0.
9
Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion.
Nat Biotechnol. 2018 Nov;36(10):946-949. doi: 10.1038/nbt.4198. Epub 2018 Aug 20.
10
Prevalence of Pre-existing Antibodies to CRISPR-Associated Nuclease Cas9 in the USA Population.
Mol Ther Methods Clin Dev. 2018 Jun 15;10:105-112. doi: 10.1016/j.omtm.2018.06.006. eCollection 2018 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验