Suppr超能文献

肌联蛋白高度重复PEVK区域在哺乳动物中的进化

Evolution of the Highly Repetitive PEVK Region of Titin Across Mammals.

作者信息

Muenzen Kathleen, Monroy Jenna, Finseth Findley R

机构信息

Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711.

Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98105.

出版信息

G3 (Bethesda). 2019 Apr 9;9(4):1103-1115. doi: 10.1534/g3.118.200714.

Abstract

The protein titin plays a key role in vertebrate muscle where it acts like a giant molecular spring. Despite its importance and conservation over vertebrate evolution, a lack of high quality annotations in non-model species makes comparative evolutionary studies of titin challenging. The PEVK region of titin-named for its high proportion of Pro-Glu-Val-Lys amino acids-is particularly difficult to annotate due to its abundance of alternatively spliced isoforms and short, highly repetitive exons. To understand PEVK evolution across mammals, we developed a bioinformatics tool, PEVK_Finder, to annotate PEVK exons from genomic sequences of titin and applied it to a diverse set of mammals. PEVK_Finder consistently outperforms standard annotation tools across a broad range of conditions and improves annotations of the PEVK region in non-model mammalian species. We find that the PEVK region can be divided into two subregions (PEVK-N, PEVK-C) with distinct patterns of evolutionary constraint and divergence. The bipartite nature of the PEVK region has implications for titin diversification. In the PEVK-N region, certain exons are conserved and may be essential, but natural selection also acts on particular codons. In the PEVK-C, exons are more homogenous and length variation of the PEVK region may provide the raw material for evolutionary adaptation in titin function. The PEVK-C region can be further divided into a highly repetitive region (PEVK-CA) and one that is more variable (PEVK-CB). Taken together, we find that the very complexity that makes titin a challenge for annotation tools may also promote evolutionary adaptation.

摘要

肌联蛋白在脊椎动物肌肉中起着关键作用,它就像一个巨大的分子弹簧。尽管肌联蛋白在脊椎动物进化过程中具有重要性且高度保守,但非模式物种中缺乏高质量注释使得对其进行比较进化研究具有挑战性。肌联蛋白的PEVK区域——因其富含脯氨酸-谷氨酸-缬氨酸-赖氨酸氨基酸而得名——由于其大量的可变剪接异构体和短的、高度重复的外显子,特别难以注释。为了了解哺乳动物中PEVK的进化,我们开发了一种生物信息学工具PEVK_Finder,用于从肌联蛋白的基因组序列中注释PEVK外显子,并将其应用于多种哺乳动物。在广泛的条件下,PEVK_Finder始终优于标准注释工具,并改善了非模式哺乳动物物种中PEVK区域的注释。我们发现,PEVK区域可分为两个子区域(PEVK-N、PEVK-C),具有不同的进化约束和分歧模式。PEVK区域的二分性质对肌联蛋白的多样化有影响。在PEVK-N区域,某些外显子是保守的,可能是必不可少的,但自然选择也作用于特定的密码子。在PEVK-C区域,外显子更为均匀,PEVK区域的长度变异可能为肌联蛋白功能的进化适应提供原材料。PEVK-C区域可进一步分为一个高度重复的区域(PEVK-CA)和一个更具变异性的区域(PEVK-CB)。综上所述,我们发现正是这种使肌联蛋白对注释工具构成挑战的复杂性,也可能促进进化适应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139f/6469411/d1d764d5307d/1103f1.jpg

相似文献

1
Evolution of the Highly Repetitive PEVK Region of Titin Across Mammals.
G3 (Bethesda). 2019 Apr 9;9(4):1103-1115. doi: 10.1534/g3.118.200714.
2
The elasticity of individual titin PEVK exons measured by single molecule atomic force microscopy.
J Biol Chem. 2005 Feb 25;280(8):6261-4. doi: 10.1074/jbc.C400573200. Epub 2005 Jan 4.
4
Towards a molecular understanding of the elasticity of titin.
J Mol Biol. 1996 Aug 9;261(1):62-71. doi: 10.1006/jmbi.1996.0441.
6
Mechanical responses of the mechanosensitive unstructured domains in cardiac titin.
Biol Cell. 2018 Mar;110(3):65-76. doi: 10.1111/boc.201700061. Epub 2017 Dec 28.
8
Polyproline II helix is a key structural motif of the elastic PEVK segment of titin.
Biochemistry. 2001 Mar 27;40(12):3427-38. doi: 10.1021/bi0022792.
9
Differential changes in titin domain phosphorylation increase myofilament stiffness in failing human hearts.
Cardiovasc Res. 2013 Sep 1;99(4):648-56. doi: 10.1093/cvr/cvt144. Epub 2013 Jun 13.
10
Nature of PEVK-titin elasticity in skeletal muscle.
Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8052-7. doi: 10.1073/pnas.95.14.8052.

引用本文的文献

1
Alternative Splicing in the Heart: The Therapeutic Potential of Regulating the Regulators.
Int J Mol Sci. 2024 Dec 4;25(23):13023. doi: 10.3390/ijms252313023.

本文引用的文献

1
The complexity of titin splicing pattern in human adult skeletal muscles.
Skelet Muscle. 2018 Mar 29;8(1):11. doi: 10.1186/s13395-018-0156-z.
2
Titin Gene and Protein Functions in Passive and Active Muscle.
Annu Rev Physiol. 2018 Feb 10;80:389-411. doi: 10.1146/annurev-physiol-021317-121234. Epub 2017 Nov 13.
4
Mechanochemical evolution of the giant muscle protein titin as inferred from resurrected proteins.
Nat Struct Mol Biol. 2017 Aug;24(8):652-657. doi: 10.1038/nsmb.3426. Epub 2017 Jul 3.
5
TimeTree: A Resource for Timelines, Timetrees, and Divergence Times.
Mol Biol Evol. 2017 Jul 1;34(7):1812-1819. doi: 10.1093/molbev/msx116.
6
Physiological Mechanisms of Eccentric Contraction and Its Applications: A Role for the Giant Titin Protein.
Front Physiol. 2017 Feb 9;8:70. doi: 10.3389/fphys.2017.00070. eCollection 2017.
7
Effects of activation on the elastic properties of intact soleus muscles with a deletion in titin.
J Exp Biol. 2017 Mar 1;220(Pt 5):828-836. doi: 10.1242/jeb.139717. Epub 2016 Dec 19.
8
Titin-truncating variants affect heart function in disease cohorts and the general population.
Nat Genet. 2017 Jan;49(1):46-53. doi: 10.1038/ng.3719. Epub 2016 Nov 21.
9
Increasing Role of Titin Mutations in Neuromuscular Disorders.
J Neuromuscul Dis. 2016 Aug 30;3(3):293-308. doi: 10.3233/JND-160158.
10
Hundreds of Genes Experienced Convergent Shifts in Selective Pressure in Marine Mammals.
Mol Biol Evol. 2016 Sep;33(9):2182-92. doi: 10.1093/molbev/msw112. Epub 2016 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验