Suppr超能文献

果蝇解旋酶 Maleless 的串联双链 RNA 结合结构域 dsRBD1、2 的结构、动态和与 roX2-lncRNA 的结合。

Structure, dynamics and roX2-lncRNA binding of tandem double-stranded RNA binding domains dsRBD1,2 of Drosophila helicase Maleless.

机构信息

Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany.

Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, 82152 Martinsried, Germany.

出版信息

Nucleic Acids Res. 2019 May 7;47(8):4319-4333. doi: 10.1093/nar/gkz125.

Abstract

Maleless (MLE) is an evolutionary conserved member of the DExH family of helicases in Drosophila. Besides its function in RNA editing and presumably siRNA processing, MLE is best known for its role in remodelling non-coding roX RNA in the context of X chromosome dosage compensation in male flies. MLE and its human orthologue, DHX9 contain two tandem double-stranded RNA binding domains (dsRBDs) located at the N-terminal region. The two dsRBDs are essential for localization of MLE at the X-territory and it is presumed that this involves binding roX secondary structures. However, for dsRBD1 roX RNA binding has so far not been described. Here, we determined the solution NMR structure of dsRBD1 and dsRBD2 of MLE in tandem and investigated its role in double-stranded RNA (dsRNA) binding. Our NMR and SAXS data show that both dsRBDs act as independent structural modules in solution and are canonical, non-sequence-specific dsRBDs featuring non-canonical KKxAXK RNA binding motifs. NMR titrations combined with filter binding experiments and isothermal titration calorimetry (ITC) document the contribution of dsRBD1 to dsRNA binding in vitro. Curiously, dsRBD1 mutants in which dsRNA binding in vitro is strongly compromised do not affect roX2 RNA binding and MLE localization in cells. These data suggest alternative functions for dsRBD1 in vivo.

摘要

MLE 是果蝇 DExH 家族解旋酶中进化保守的成员。除了在 RNA 编辑和推测的 siRNA 加工中的功能外,MLE 最著名的作用是在雄性果蝇的 X 染色体剂量补偿中重塑非编码 roX RNA。MLE 和其人类同源物 DHX9 包含两个串联的双链 RNA 结合结构域(dsRBD)位于 N 端区域。这两个 dsRBD 对于 MLE 在 X 区的定位是必不可少的,据推测这涉及到 roX 二级结构的结合。然而,到目前为止,还没有描述 dsRBD1 与 roX RNA 的结合。在这里,我们确定了 MLE 的串联 dsRBD1 和 dsRBD2 的溶液 NMR 结构,并研究了其在双链 RNA(dsRNA)结合中的作用。我们的 NMR 和 SAXS 数据表明,两个 dsRBD 都作为独立的结构模块在溶液中起作用,是规范的、非序列特异性的 dsRBD,具有非典型的 KKxAXK RNA 结合基序。NMR 滴定实验结合过滤结合实验和等温滴定量热法(ITC)记录了 dsRBD1 在体外对 dsRNA 结合的贡献。奇怪的是,dsRBD1 突变体在体外强烈削弱 dsRNA 结合的突变体不影响 roX2 RNA 结合和 MLE 在细胞中的定位。这些数据表明 dsRBD1 在体内具有替代功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b6/6486548/1cbb920a6f65/gkz125fig1.jpg

相似文献

3
ATP-dependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins.
Mol Cell. 2013 Jul 25;51(2):174-84. doi: 10.1016/j.molcel.2013.06.011.
4
A mutually exclusive stem-loop arrangement in roX2 RNA is essential for X-chromosome regulation in .
Genes Dev. 2017 Oct 1;31(19):1973-1987. doi: 10.1101/gad.304600.117. Epub 2017 Oct 24.
5
Structure-function analysis of the RNA helicase maleless.
Nucleic Acids Res. 2008 Feb;36(3):950-62. doi: 10.1093/nar/gkm1108. Epub 2007 Dec 17.
9
Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila.
Mol Cell. 2013 Jul 25;51(2):156-73. doi: 10.1016/j.molcel.2013.07.001.
10
Two-step mechanism for selective incorporation of lncRNA into a chromatin modifier.
Nucleic Acids Res. 2020 Jul 27;48(13):7483-7501. doi: 10.1093/nar/gkaa492.

引用本文的文献

1
Adar contributes to genome integrity by regulating R-loop homeostasis in Drosophila.
BMC Biol. 2025 Jul 15;23(1):209. doi: 10.1186/s12915-025-02310-y.
2
N-terminus of MSL1 is critical for dosage compensation.
Elife. 2024 Dec 19;13:RP93241. doi: 10.7554/eLife.93241.
3
Regulation and mechanisms of action of RNA helicases.
RNA Biol. 2024 Jan;21(1):24-38. doi: 10.1080/15476286.2024.2415801. Epub 2024 Oct 22.
5
Interaction of MLE with CLAMP zinc finger is involved in proper MSL proteins binding to chromosomes in .
Open Biol. 2024 Mar;14(3):230270. doi: 10.1098/rsob.230270. Epub 2024 Mar 13.
6
Emerging roles of RNA binding proteins in intervertebral disc degeneration and osteoarthritis.
Orthop Surg. 2023 Dec;15(12):3015-3025. doi: 10.1111/os.13851. Epub 2023 Oct 6.
9
Validation and classification of RNA binding proteins identified by mRNA interactome capture.
RNA. 2021 Oct;27(10):1173-1185. doi: 10.1261/rna.078700.121. Epub 2021 Jul 2.
10
The three-way junction structure of the HIV-1 PBS-segment binds host enzyme important for viral infectivity.
Nucleic Acids Res. 2021 Jun 4;49(10):5925-5942. doi: 10.1093/nar/gkab342.

本文引用的文献

4
Dosage Compensation of the X Chromosome: A Complex Epigenetic Assignment Involving Chromatin Regulators and Long Noncoding RNAs.
Annu Rev Biochem. 2018 Jun 20;87:323-350. doi: 10.1146/annurev-biochem-062917-011816. Epub 2018 Apr 18.
5
Hrp48 and eIF3d contribute to msl-2 mRNA translational repression.
Nucleic Acids Res. 2018 May 4;46(8):4099-4113. doi: 10.1093/nar/gky246.
6
Structural basis of siRNA recognition by TRBP double-stranded RNA binding domains.
EMBO J. 2018 Mar 15;37(6). doi: 10.15252/embj.201797089. Epub 2018 Feb 15.
7
A mutually exclusive stem-loop arrangement in roX2 RNA is essential for X-chromosome regulation in .
Genes Dev. 2017 Oct 1;31(19):1973-1987. doi: 10.1101/gad.304600.117. Epub 2017 Oct 24.
8
Conserved asymmetry underpins homodimerization of Dicer-associated double-stranded RNA-binding proteins.
Nucleic Acids Res. 2017 Dec 1;45(21):12577-12584. doi: 10.1093/nar/gkx928.
9
Comprehensive analysis of NMR data using advanced line shape fitting.
J Biomol NMR. 2017 Oct;69(2):93-99. doi: 10.1007/s10858-017-0141-6. Epub 2017 Oct 17.
10
Molecular basis for asymmetry sensing of siRNAs by the Drosophila Loqs-PD/Dcr-2 complex in RNA interference.
Nucleic Acids Res. 2017 Dec 1;45(21):12536-12550. doi: 10.1093/nar/gkx886.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验