Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America.
Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America.
PLoS Biol. 2019 Feb 26;17(2):e3000153. doi: 10.1371/journal.pbio.3000153. eCollection 2019 Feb.
The transcriptional mechanisms driving lineage specification during development are still largely unknown, as the interplay of multiple transcription factors makes it difficult to dissect these molecular events. Using a cell-based differentiation platform to probe transcription function, we investigated the role of the key paraxial mesoderm and skeletal myogenic commitment factors-mesogenin 1 (Msgn1), T-box 6 (Tbx6), forkhead box C1 (Foxc1), paired box 3 (Pax3), Paraxis, mesenchyme homeobox 1 (Meox1), sine oculis-related homeobox 1 (Six1), and myogenic factor 5 (Myf5)-in paraxial mesoderm and skeletal myogenesis. From this study, we define a genetic hierarchy, with Pax3 emerging as the gatekeeper between the presomitic mesoderm and the myogenic lineage. By assaying chromatin accessibility, genomic binding and transcription profiling in mesodermal cells from mouse and human Pax3-induced embryonic stem cells and Pax3-null embryonic day (E)9.5 mouse embryos, we identified conserved Pax3 functions in the activation of the skeletal myogenic lineage through modulation of Hedgehog, Notch, and bone morphogenetic protein (BMP) signaling pathways. In addition, we demonstrate that Pax3 molecular function involves chromatin remodeling of its bound elements through an increase in chromatin accessibility and cooperation with sine oculis-related homeobox 4 (Six4) and TEA domain family member 2 (Tead2) factors. To our knowledge, these data provide the first integrated analysis of Pax3 function, demonstrating its ability to remodel chromatin in mesodermal cells from developing embryos and proving a mechanistic footing for the transcriptional hierarchy driving myogenesis.
在发育过程中驱动谱系特化的转录机制在很大程度上仍然未知,因为多个转录因子的相互作用使得这些分子事件难以剖析。我们使用基于细胞的分化平台来探测转录功能,研究了关键轴旁中胚层和骨骼肌生成决定因子 - 中胚层基因 1(Msgn1)、T 盒 6(Tbx6)、叉头框 C1(Foxc1)、配对盒 3(Pax3)、Paraxis、间质同源盒 1(Meox1)、 sine oculis 相关同源盒 1(Six1)和肌生成因子 5(Myf5)- 在轴旁中胚层和骨骼肌发生中的作用。从这项研究中,我们定义了一个遗传层次结构,其中 Pax3 作为前体中胚层和肌生成谱系之间的守门员出现。通过检测来自小鼠和人 Pax3 诱导的胚胎干细胞和 Pax3 缺失的胚胎第 9.5 天(E9.5)小鼠胚胎的中胚层细胞中的染色质可及性、基因组结合和转录谱,我们确定了 Pax3 在通过调节 Hedgehog、Notch 和骨形态发生蛋白(BMP)信号通路激活骨骼肌谱系中的保守功能。此外,我们证明 Pax3 分子功能涉及通过增加染色质可及性及其结合元件的染色质重塑,以及与 sine oculis 相关同源盒 4(Six4)和 TEA 结构域家族成员 2(Tead2)因子的合作。据我们所知,这些数据提供了 Pax3 功能的第一个综合分析,证明了它在发育中的胚胎中重塑中胚层细胞染色质的能力,并为驱动肌生成的转录层次结构提供了机制基础。