Department of Ecology and Evolutionary Biology, Kansas Biological Survey, University of Kansas, Lawrence, Kansas.
Department of Earth Sciences, Memorial University, St. John's, NL, Canada.
Glob Chang Biol. 2019 May;25(5):1793-1807. doi: 10.1111/gcb.14605. Epub 2019 Mar 20.
Accurate representation of temperature sensitivity (Q ) of soil microbial activity across time is critical for projecting soil CO efflux. As microorganisms mediate soil carbon (C) loss via exo-enzyme activity and respiration, we explore temperature sensitivities of microbial exo-enzyme activity and respiratory CO loss across time and assess mechanisms associated with these potential changes in microbial temperature responses. We collected soils along a latitudinal boreal forest transect with different temperature regimes (long-term timescale) and exposed these soils to laboratory temperature manipulations at 5, 15, and 25°C for 84 days (short-term timescale). We quantified temperature sensitivity of microbial activity per g soil and per g microbial biomass at days 9, 34, 55, and 84, and determined bacterial and fungal community structure before the incubation and at days 9 and 84. All biomass-specific rates exhibited temperature sensitivities resistant to change across short- and long-term timescales (mean Q = 2.77 ± 0.25, 2.63 ± 0.26, 1.78 ± 0.26, 2.27 ± 0.25, 3.28 ± 0.44, 2.89 ± 0.55 for β-glucosidase, N-acetyl-β-d-glucosaminidase, leucine amino peptidase, acid phosphatase, cellobiohydrolase, and CO efflux, respectively). In contrast, temperature sensitivity of soil mass-specific rates exhibited either resilience (the Q value changed and returned to the original value over time) or resistance to change. Regardless of the microbial flux responses, bacterial and fungal community structure was susceptible to change with temperature, significantly differing with short- and long-term exposure to different temperature regimes. Our results highlight that temperature responses of microbial resource allocation to exo-enzyme production and associated respiratory CO loss per unit biomass can remain invariant across time, and thus, that vulnerability of soil organic C stocks to rising temperatures may persist in the long term. Furthermore, resistant temperature sensitivities of biomass-specific rates in spite of different community structures imply decoupling of community constituents and the temperature responses of soil microbial activities.
准确表示土壤微生物活性的温度敏感性 (Q) 对于预测土壤 CO 排放至关重要。由于微生物通过外酶活性和呼吸作用介导土壤碳 (C) 的损失,我们探索了微生物外酶活性和呼吸 CO 损失的温度敏感性随时间的变化,并评估了与微生物温度响应这些潜在变化相关的机制。我们沿着具有不同温度格局的北方森林样带收集土壤(长期时间尺度),并将这些土壤在 5、15 和 25°C 下进行实验室温度处理 84 天(短期时间尺度)。我们在第 9、34、55 和 84 天量化了每克土壤和每克微生物生物量的微生物活性的温度敏感性,并在孵育前和第 9 和 84 天确定了细菌和真菌群落结构。所有生物量特异性速率都表现出对短期和长期时间尺度变化的温度敏感性(平均 Q 为 2.77±0.25、2.63±0.26、1.78±0.26、2.27±0.25、3.28±0.44、2.89±0.55,分别为β-葡萄糖苷酶、N-乙酰-β-D-葡萄糖胺酶、亮氨酸氨基肽酶、酸性磷酸酶、纤维二糖水解酶和 CO 排放)。相比之下,土壤质量特异性速率的温度敏感性表现出弹性(Q 值随时间变化并恢复到原始值)或对变化的抵抗力。无论微生物通量反应如何,细菌和真菌群落结构都容易随温度变化,在不同的短期和长期温度暴露下差异显著。我们的研究结果表明,微生物对生产外酶和相关呼吸 CO 损失的资源分配的温度响应可以保持不变,因此,土壤有机 C 储量对升温的脆弱性可能会在长期内持续存在。此外,尽管群落结构不同,但生物量特异性速率的抗性温度敏感性意味着群落成分与土壤微生物活性的温度响应解耦。