Suppr超能文献

通过包埋于壳聚糖包被的海藻酸钠珠粒中来提高羧酸酯酶的稳定性。

Enhancing the stability of a carboxylesterase by entrapment in chitosan coated alginate beads.

作者信息

Raghu Sujatha, Pennathur Gautam

机构信息

Centre for Biotechnology, Anna University , Chennai , India.

出版信息

Turk J Biol. 2018 Aug 9;42(4):307-318. doi: 10.3906/biy-1805-28. eCollection 2018.

Abstract

A carboxylesterase isolated from Aeromonas caviae MTCC 7725 was immobilized by entrapping it in chitosan coated calcium alginate beads. This was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). The activity of the native and immobilized enzyme was measured at various temperatures, pH levels, and organic solvents. The optimum temperature for activity of the native enzyme was found to be 40 °C and this increased to 50 °C on immobilization. The immobilized enzyme showed enhanced stability and high residual activity in various organic solvents as compared to the free enzyme. An environmentally benign approach was used for the synthesis of ethyl salicylate using the immobilized enzyme. The product obtained was confirmed by GC-MS. The kinetic parameters, such as K m and Vmax, were also determined for the native and immobilized enzyme. The immobilized enzyme retained 50% of its activity after vfie cycles. The immobilized enzyme retained 80% and 40% of its activity at 4 °C and at 37 °C, respectively, at the end of 40 days. The results obtained from our study show that the immobilized enzyme can serve as a robust catalyst for industrial applications.

摘要

从豚鼠气单胞菌MTCC 7725中分离出的一种羧酸酯酶被包埋在壳聚糖包被的海藻酸钙珠中进行固定化。通过扫描电子显微镜(SEM)、能量色散X射线光谱(EDX)和傅里叶变换红外光谱(FTIR)对其进行了表征。在不同温度、pH值和有机溶剂条件下测定了天然酶和固定化酶的活性。发现天然酶活性的最适温度为40℃,固定化后提高到50℃。与游离酶相比,固定化酶在各种有机溶剂中表现出更高的稳定性和高残留活性。采用环境友好的方法,利用固定化酶合成水杨酸乙酯。通过气相色谱-质谱联用(GC-MS)对所得产物进行了确认。还测定了天然酶和固定化酶的动力学参数,如K m和Vmax。固定化酶在经过五个循环后仍保留其50%的活性。在40天结束时,固定化酶在4℃和37℃下分别保留其80%和40%的活性。我们的研究结果表明,固定化酶可作为工业应用中的一种强大催化剂。

相似文献

1
Enhancing the stability of a carboxylesterase by entrapment in chitosan coated alginate beads.
Turk J Biol. 2018 Aug 9;42(4):307-318. doi: 10.3906/biy-1805-28. eCollection 2018.
2
Immobilization of thermoalkalophilic recombinant esterase enzyme by entrapment in silicate coated Ca-alginate beads and its hydrolytic properties.
Int J Biol Macromol. 2012 Apr 1;50(3):545-51. doi: 10.1016/j.ijbiomac.2012.01.017. Epub 2012 Jan 31.
4
Zinc oxide nanoparticles-impregnated chitosan surfaces for covalent immobilization of trypsin: Stability & kinetic studies.
Int J Biol Macromol. 2022 May 15;207:205-221. doi: 10.1016/j.ijbiomac.2022.03.014. Epub 2022 Mar 5.
5
The Neutral Protease Immobilization: Physical Characterization of Sodium Alginate-Chitosan Gel Beads.
Appl Biochem Biotechnol. 2022 May;194(5):2269-2283. doi: 10.1007/s12010-021-03773-9. Epub 2022 Jan 31.
6
Synthesis and characterization of chitosan/TiO2 composite beads for improving stability of porcine pancreatic lipase.
Appl Biochem Biotechnol. 2015 Jan;175(2):1052-68. doi: 10.1007/s12010-014-1321-4. Epub 2014 Oct 31.
7
TiO₂ beads and TiO₂-chitosan beads for urease immobilization.
Mater Sci Eng C Mater Biol Appl. 2014 Sep;42:429-35. doi: 10.1016/j.msec.2014.05.058. Epub 2014 Jun 5.
8
Immobilization of horseradish peroxidase on modified chitosan beads.
Int J Biol Macromol. 2010 Apr 1;46(3):324-30. doi: 10.1016/j.ijbiomac.2009.12.018. Epub 2010 Jan 9.
9
10
Continuous degradation of maltose by enzyme entrapment technology using calcium alginate beads as a matrix.
Biochem Biophys Rep. 2015 Oct 8;4:250-256. doi: 10.1016/j.bbrep.2015.09.025. eCollection 2015 Dec.

引用本文的文献

2
Immobilization of Cells in Pumice Stone and Its Application for Acetylglucosamine Production.
Food Technol Biotechnol. 2022 Mar;60(1):4-10. doi: 10.17113/ftb.60.01.22.6994.
3
Polymers as Encapsulating Agents and Delivery Vehicles of Enzymes.
Polymers (Basel). 2021 Nov 23;13(23):4061. doi: 10.3390/polym13234061.
4
Preparation of immobilized arylsulfatase on magnetic FeO nanoparticles and its application for agar quality improvement.
Food Sci Nutr. 2021 Jul 7;9(9):4952-4962. doi: 10.1002/fsn3.2446. eCollection 2021 Sep.

本文引用的文献

1
Enzyme immobilization: an overview on techniques and support materials.
3 Biotech. 2013 Feb;3(1):1-9. doi: 10.1007/s13205-012-0071-7. Epub 2012 Jun 6.
2
Solid-binding peptides for immobilisation of thermostable enzymes to hydrolyse biomass polysaccharides.
Biotechnol Biofuels. 2017 Feb 2;10:29. doi: 10.1186/s13068-017-0715-2. eCollection 2017.
3
Prevalence, virulence and antimicrobial resistance patterns of Aeromonas spp. isolated from children with diarrhea.
Germs. 2016 Sep 1;6(3):91-6. doi: 10.11599/germs.2016.1094. eCollection 2016 Sep.
4
Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07.
Braz J Microbiol. 2016 Jul-Sep;47(3):647-57. doi: 10.1016/j.bjm.2015.04.002. Epub 2016 Apr 26.
5
Kinetic Characterization and Effect of Immobilized Thermostable β-Glucosidase in Alginate Gel Beads on Sugarcane Juice.
ISRN Biochem. 2014 Feb 20;2014:178498. doi: 10.1155/2014/178498. eCollection 2014.
7
Fast and economic immobilization methods described for non-commercial Pseudomonas lipases.
BMC Biotechnol. 2014 Apr 22;14:27. doi: 10.1186/1472-6750-14-27.
10
Zymography methods for visualizing hydrolytic enzymes.
Nat Methods. 2013 Mar;10(3):211-20. doi: 10.1038/nmeth.2371.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验