Suppr超能文献

深度学习方法在从脑电图报告中识别患者队列时用于否定检测的作用。

The Role of a Deep-Learning Method for Negation Detection in Patient Cohort Identification from Electroencephalography Reports.

作者信息

Taylor Stuart J, Harabagiu Sanda M

机构信息

The University of Texas at Dallas, Richardson, TX, USA.

出版信息

AMIA Annu Symp Proc. 2018 Dec 5;2018:1018-1027. eCollection 2018.

Abstract

Detecting negation in biomedical texts entails the automatic identification of negation cues (e.g. "never", "not", "no longer") as well as the scope of these cues. When medical concepts or terms are identified within the scope of a negation cue, their polarity is inferred as "negative". All the other concepts or words receive a positive polarity. Correctly inferring the polarity is essential for patient cohort retrieval systems, as all inclusion criteria need to be automatically assigned positive polarity, whereas exclusion criteria should receive negative polarity. Motivated by the recent development of techniques using deep learning, we have experimented with a neural negation detection technique and compared it against an existing neural polarity recognition system, which were incorporated in a patient cohort system operating on clinical electroencephalography (EEG) reports. Our experiments indicate that the neural negation detection method produces better patient cohorts then the polarity recognition method.

摘要

在生物医学文本中检测否定需要自动识别否定线索(如“从不”“不”“不再”)及其范围。当在否定线索范围内识别出医学概念或术语时,其极性被推断为“否定”。所有其他概念或词则具有正极性。正确推断极性对于患者队列检索系统至关重要,因为所有纳入标准都需要自动赋予正极性,而排除标准应具有负极性。受深度学习技术近期发展的推动,我们试验了一种神经否定检测技术,并将其与现有的神经极性识别系统进行比较,这两种技术都被整合到一个基于临床脑电图(EEG)报告运行的患者队列系统中。我们的实验表明,神经否定检测方法比极性识别方法能产生更好的患者队列。

相似文献

7

引用本文的文献

3
Trustworthy assertion classification through prompting.通过提示进行可信断言分类。
J Biomed Inform. 2022 Aug;132:104139. doi: 10.1016/j.jbi.2022.104139. Epub 2022 Jul 8.

本文引用的文献

7
Evaluating temporal relations in clinical text: 2012 i2b2 Challenge.评估临床文本中的时间关系:2012 i2b2 挑战赛。
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):806-13. doi: 10.1136/amiajnl-2013-001628. Epub 2013 Apr 5.
8
How to write an EEG report: dos and don'ts.如何撰写脑电图报告:注意事项。
Neurology. 2013 Jan 1;80(1 Suppl 1):S43-6. doi: 10.1212/WNL.0b013e3182797528.
10
2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.2010 i2b2/VA 挑战赛:临床文本中的概念、断言和关系
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验