Suppr超能文献

深度学习方法在从脑电图报告中识别患者队列时用于否定检测的作用。

The Role of a Deep-Learning Method for Negation Detection in Patient Cohort Identification from Electroencephalography Reports.

作者信息

Taylor Stuart J, Harabagiu Sanda M

机构信息

The University of Texas at Dallas, Richardson, TX, USA.

出版信息

AMIA Annu Symp Proc. 2018 Dec 5;2018:1018-1027. eCollection 2018.

Abstract

Detecting negation in biomedical texts entails the automatic identification of negation cues (e.g. "never", "not", "no longer") as well as the scope of these cues. When medical concepts or terms are identified within the scope of a negation cue, their polarity is inferred as "negative". All the other concepts or words receive a positive polarity. Correctly inferring the polarity is essential for patient cohort retrieval systems, as all inclusion criteria need to be automatically assigned positive polarity, whereas exclusion criteria should receive negative polarity. Motivated by the recent development of techniques using deep learning, we have experimented with a neural negation detection technique and compared it against an existing neural polarity recognition system, which were incorporated in a patient cohort system operating on clinical electroencephalography (EEG) reports. Our experiments indicate that the neural negation detection method produces better patient cohorts then the polarity recognition method.

摘要

在生物医学文本中检测否定需要自动识别否定线索(如“从不”“不”“不再”)及其范围。当在否定线索范围内识别出医学概念或术语时,其极性被推断为“否定”。所有其他概念或词则具有正极性。正确推断极性对于患者队列检索系统至关重要,因为所有纳入标准都需要自动赋予正极性,而排除标准应具有负极性。受深度学习技术近期发展的推动,我们试验了一种神经否定检测技术,并将其与现有的神经极性识别系统进行比较,这两种技术都被整合到一个基于临床脑电图(EEG)报告运行的患者队列系统中。我们的实验表明,神经否定检测方法比极性识别方法能产生更好的患者队列。

相似文献

2
Active deep learning for the identification of concepts and relations in electroencephalography reports.
J Biomed Inform. 2019 Oct;98:103265. doi: 10.1016/j.jbi.2019.103265. Epub 2019 Aug 27.
3
Does BERT need domain adaptation for clinical negation detection?
J Am Med Inform Assoc. 2020 Apr 1;27(4):584-591. doi: 10.1093/jamia/ocaa001.
4
Negation-based transfer learning for improving biomedical Named Entity Recognition and Relation Extraction.
J Biomed Inform. 2023 Feb;138:104279. doi: 10.1016/j.jbi.2022.104279. Epub 2023 Jan 4.
5
Negation and uncertainty detection in clinical texts written in Spanish: a deep learning-based approach.
PeerJ Comput Sci. 2022 Mar 7;8:e913. doi: 10.7717/peerj-cs.913. eCollection 2022.
6
Multi-modal Patient Cohort Identification from EEG Report and Signal Data.
AMIA Annu Symp Proc. 2017 Feb 10;2016:1794-1803. eCollection 2016.
7
Biomedical negation scope detection with conditional random fields.
J Am Med Inform Assoc. 2010 Nov-Dec;17(6):696-701. doi: 10.1136/jamia.2010.003228.
8
Detecting negation and scope in Chinese clinical notes using character and word embedding.
Comput Methods Programs Biomed. 2017 Mar;140:53-59. doi: 10.1016/j.cmpb.2016.11.009. Epub 2016 Nov 23.
9
Negation and speculation processing: A study on cue-scope labelling and assertion classification in Spanish clinical text.
Artif Intell Med. 2023 Nov;145:102682. doi: 10.1016/j.artmed.2023.102682. Epub 2023 Oct 10.
10
A novel hybrid approach to automated negation detection in clinical radiology reports.
J Am Med Inform Assoc. 2007 May-Jun;14(3):304-11. doi: 10.1197/jamia.M2284. Epub 2007 Feb 28.

引用本文的文献

1
Unstructured Electronic Health Records of Dysphagic Patients Analyzed by Large Language Models.
IEEE J Transl Eng Health Med. 2025 May 19;13:237-245. doi: 10.1109/JTEHM.2025.3571255. eCollection 2025.
3
Trustworthy assertion classification through prompting.
J Biomed Inform. 2022 Aug;132:104139. doi: 10.1016/j.jbi.2022.104139. Epub 2022 Jul 8.
4
Negation and uncertainty detection in clinical texts written in Spanish: a deep learning-based approach.
PeerJ Comput Sci. 2022 Mar 7;8:e913. doi: 10.7717/peerj-cs.913. eCollection 2022.
5
A fast, accurate, and generalisable heuristic-based negation detection algorithm for clinical text.
Comput Biol Med. 2021 Mar;130:104216. doi: 10.1016/j.compbiomed.2021.104216. Epub 2021 Jan 16.
6
Deep learning in clinical natural language processing: a methodical review.
J Am Med Inform Assoc. 2020 Mar 1;27(3):457-470. doi: 10.1093/jamia/ocz200.
7
Active deep learning for the identification of concepts and relations in electroencephalography reports.
J Biomed Inform. 2019 Oct;98:103265. doi: 10.1016/j.jbi.2019.103265. Epub 2019 Aug 27.

本文引用的文献

1
Active Deep Learning-Based Annotation of Electroencephalography Reports for Cohort Identification.
AMIA Jt Summits Transl Sci Proc. 2017 Jul 26;2017:229-238. eCollection 2017.
2
Multi-modal Patient Cohort Identification from EEG Report and Signal Data.
AMIA Annu Symp Proc. 2017 Feb 10;2016:1794-1803. eCollection 2016.
4
A review of approaches to identifying patient phenotype cohorts using electronic health records.
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):221-30. doi: 10.1136/amiajnl-2013-001935. Epub 2013 Nov 7.
5
Unified EEG terminology and criteria for nonconvulsive status epilepticus.
Epilepsia. 2013 Sep;54 Suppl 6:28-9. doi: 10.1111/epi.12270.
6
A flexible framework for recognizing events, temporal expressions, and temporal relations in clinical text.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):867-75. doi: 10.1136/amiajnl-2013-001619. Epub 2013 May 18.
7
Evaluating temporal relations in clinical text: 2012 i2b2 Challenge.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):806-13. doi: 10.1136/amiajnl-2013-001628. Epub 2013 Apr 5.
8
How to write an EEG report: dos and don'ts.
Neurology. 2013 Jan 1;80(1 Suppl 1):S43-6. doi: 10.1212/WNL.0b013e3182797528.
9
Dependency Parser-based Negation Detection in Clinical Narratives.
AMIA Jt Summits Transl Sci Proc. 2012;2012:1-8. Epub 2012 Mar 19.
10
2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验