文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于放射学报告中自动重要发现标记和提取的否定与推测检测的深度学习方法:内部验证与技术比较研究

Deep Learning Approach for Negation and Speculation Detection for Automated Important Finding Flagging and Extraction in Radiology Report: Internal Validation and Technique Comparison Study.

作者信息

Weng Kung-Hsun, Liu Chung-Feng, Chen Chia-Jung

机构信息

Department of Medical Imaging, Chi Mei Medical Center, Chiali, Tainan, Taiwan.

Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.

出版信息

JMIR Med Inform. 2023 Apr 25;11:e46348. doi: 10.2196/46348.


DOI:10.2196/46348
PMID:37097731
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10170361/
Abstract

BACKGROUND: Negation and speculation unrelated to abnormal findings can lead to false-positive alarms for automatic radiology report highlighting or flagging by laboratory information systems. OBJECTIVE: This internal validation study evaluated the performance of natural language processing methods (NegEx, NegBio, NegBERT, and transformers). METHODS: We annotated all negative and speculative statements unrelated to abnormal findings in reports. In experiment 1, we fine-tuned several transformer models (ALBERT [A Lite Bidirectional Encoder Representations from Transformers], BERT [Bidirectional Encoder Representations from Transformers], DeBERTa [Decoding-Enhanced BERT With Disentangled Attention], DistilBERT [Distilled version of BERT], ELECTRA [Efficiently Learning an Encoder That Classifies Token Replacements Accurately], ERNIE [Enhanced Representation through Knowledge Integration], RoBERTa [Robustly Optimized BERT Pretraining Approach], SpanBERT, and XLNet) and compared their performance using precision, recall, accuracy, and F-scores. In experiment 2, we compared the best model from experiment 1 with 3 established negation and speculation-detection algorithms (NegEx, NegBio, and NegBERT). RESULTS: Our study collected 6000 radiology reports from 3 branches of the Chi Mei Hospital, covering multiple imaging modalities and body parts. A total of 15.01% (105,755/704,512) of words and 39.45% (4529/11,480) of important diagnostic keywords occurred in negative or speculative statements unrelated to abnormal findings. In experiment 1, all models achieved an accuracy of >0.98 and F-score of >0.90 on the test data set. ALBERT exhibited the best performance (accuracy=0.991; F-score=0.958). In experiment 2, ALBERT outperformed the optimized NegEx, NegBio, and NegBERT methods in terms of overall performance (accuracy=0.996; F-score=0.991), in the prediction of whether diagnostic keywords occur in speculative statements unrelated to abnormal findings, and in the improvement of the performance of keyword extraction (accuracy=0.996; F-score=0.997). CONCLUSIONS: The ALBERT deep learning method showed the best performance. Our results represent a significant advancement in the clinical applications of computer-aided notification systems.

摘要

背景:与异常发现无关的否定和推测可能导致实验室信息系统对放射学报告进行自动高亮显示或标记时出现假阳性警报。 目的:这项内部验证研究评估了自然语言处理方法(NegEx、NegBio、NegBERT和Transformer)的性能。 方法:我们对报告中所有与异常发现无关的否定和推测性陈述进行了标注。在实验1中,我们对几个Transformer模型(ALBERT [来自Transformer的轻量级双向编码器表示]、BERT [来自Transformer的双向编码器表示]、DeBERTa [具有解缠注意力的解码增强BERT]、DistilBERT [BERT的蒸馏版本]、ELECTRA [高效学习准确分类令牌替换的编码器]、ERNIE [通过知识整合增强表示]、RoBERTa [稳健优化的BERT预训练方法]、SpanBERT和XLNet)进行了微调,并使用精确率、召回率、准确率和F分数比较了它们的性能。在实验2中,我们将实验1中表现最佳的模型与3种已建立的否定和推测检测算法(NegEx、NegBio和NegBERT)进行了比较。 结果:我们的研究从奇美医院的3个分支机构收集了6000份放射学报告,涵盖多种成像模态和身体部位。在与异常发现无关的否定或推测性陈述中,共有15.01%(105,755/704,512)的单词和39.45%(4529/11,480)的重要诊断关键词出现。在实验1中,所有模型在测试数据集上的准确率均>0.98,F分数均>0.90。ALBERT表现最佳(准确率=0.991;F分数=0.958)。在实验2中,ALBERT在整体性能(准确率=0.996;F分数=0.991)、预测诊断关键词是否出现在与异常发现无关的推测性陈述中以及提高关键词提取性能(准确率=0.996;F分数=0.997)方面均优于优化后的NegEx、NegBio和NegBERT方法。 结论:ALBERT深度学习方法表现最佳。我们的结果代表了计算机辅助通知系统临床应用的重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cda/10170361/ef6e5f6ffef7/medinform_v11i1e46348_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cda/10170361/4646e101fd72/medinform_v11i1e46348_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cda/10170361/180620f00590/medinform_v11i1e46348_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cda/10170361/ef6e5f6ffef7/medinform_v11i1e46348_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cda/10170361/4646e101fd72/medinform_v11i1e46348_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cda/10170361/180620f00590/medinform_v11i1e46348_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cda/10170361/ef6e5f6ffef7/medinform_v11i1e46348_fig3.jpg

相似文献

[1]
Deep Learning Approach for Negation and Speculation Detection for Automated Important Finding Flagging and Extraction in Radiology Report: Internal Validation and Technique Comparison Study.

JMIR Med Inform. 2023-4-25

[2]
Multi-Label Classification in Patient-Doctor Dialogues With the RoBERTa-WWM-ext + CNN (Robustly Optimized Bidirectional Encoder Representations From Transformers Pretraining Approach With Whole Word Masking Extended Combining a Convolutional Neural Network) Model: Named Entity Study.

JMIR Med Inform. 2022-4-21

[3]
Extracting Pulmonary Nodules and Nodule Characteristics from Radiology Reports of Lung Cancer Screening Patients Using Transformer Models.

J Healthc Inform Res. 2024-5-17

[4]
RadBERT: Adapting Transformer-based Language Models to Radiology.

Radiol Artif Intell. 2022-6-15

[5]
Automatic text classification of actionable radiology reports of tinnitus patients using bidirectional encoder representations from transformer (BERT) and in-domain pre-training (IDPT).

BMC Med Inform Decis Mak. 2022-7-30

[6]
Use of BERT (Bidirectional Encoder Representations from Transformers)-Based Deep Learning Method for Extracting Evidences in Chinese Radiology Reports: Development of a Computer-Aided Liver Cancer Diagnosis Framework.

J Med Internet Res. 2021-1-12

[7]
Identifying Potential Lyme Disease Cases Using Self-Reported Worldwide Tweets: Deep Learning Modeling Approach Enhanced With Sentimental Words Through Emojis.

J Med Internet Res. 2023-10-16

[8]
Automatic detection of actionable radiology reports using bidirectional encoder representations from transformers.

BMC Med Inform Decis Mak. 2021-9-11

[9]
Momentary Depressive Feeling Detection Using X (Formerly Twitter) Data: Contextual Language Approach.

JMIR AI. 2023-11-27

[10]
Depression Risk Prediction for Chinese Microblogs via Deep-Learning Methods: Content Analysis.

JMIR Med Inform. 2020-7-29

引用本文的文献

[1]
In-Context Learning with Large Language Models: A Simple and Effective Approach to Improve Radiology Report Labeling.

Healthc Inform Res. 2025-7

[2]
Year 2023 in Biomedical Natural Language Processing: a Tribute to Large Language Models and Generative AI.

Yearb Med Inform. 2024-8

[3]
A Large Language Model to Detect Negated Expressions in Radiology Reports.

J Imaging Inform Med. 2025-6

本文引用的文献

[1]
Automatic detection of actionable radiology reports using bidirectional encoder representations from transformers.

BMC Med Inform Decis Mak. 2021-9-11

[2]
Clinicians' Behavior Toward Radiology Reports: A Cross-Sectional Study.

Cureus. 2020-11-5

[3]
The Impact of Pretrained Language Models on Negation and Speculation Detection in Cross-Lingual Medical Text: Comparative Study.

JMIR Med Inform. 2020-12-3

[4]
Negation Scope Detection in Clinical Notes and Scientific Abstracts: A Feature-enriched LSTM-based Approach.

AMIA Jt Summits Transl Sci Proc. 2019-5-6

[5]
The Role of a Deep-Learning Method for Negation Detection in Patient Cohort Identification from Electroencephalography Reports.

AMIA Annu Symp Proc. 2018-12-5

[6]
Radiology report: what is the opinion of the referring physician?

Radiol Bras. 2018

[7]
NegBio: a high-performance tool for negation and uncertainty detection in radiology reports.

AMIA Jt Summits Transl Sci Proc. 2018-5-18

[8]
Validating Laboratory Results in Electronic Health Records: A College of American Pathologists Q-Probes Study.

Arch Pathol Lab Med. 2016-9

[9]
Alarm fatigue: impacts on patient safety.

Curr Opin Anaesthesiol. 2015-12

[10]
Automatic negation detection in narrative pathology reports.

Artif Intell Med. 2015-3-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索