Suppr超能文献

将知识驱动的见解融入协同过滤模型以促进罕见病的鉴别诊断。

Incorporating Knowledge-Driven Insights into a Collaborative Filtering Model to Facilitate the Differential Diagnosis of Rare Diseases.

作者信息

Shen Feichen, Liu Hongfang

机构信息

Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.

出版信息

AMIA Annu Symp Proc. 2018 Dec 5;2018:1505-1514. eCollection 2018.

Abstract

Rare diseases, although individually rare, collectively affect one in ten Americans. Because of their rarity, patients with rare diseases are typically left misdiagnosed or undiagnosed, which leads to a prolonged medical journey. The diagnosis pathway of a rare disease is highly dependent on the associated clinical phenotypes, i.e., the observable characteristics, at the physical, morphologic, or biochemical level, of an individual. In our previous study, we applied a collaborative filtering model on clinical data generated at Mayo Clinic to stratify patients into subgroups of rare diseases. Information mined from clinical data, however, usually contains a certain level of noise, such as occurrences of comorbidities, which could impact the accuracy of differential diagnosis. In this study, we sought to incorporate a knowledge-driven approach into collaborative filtering to optimize results learned from clinical data. Our results demonstrated an improvement in performance over pure data-driven approaches with the potential to facilitate the differential diagnosis of rare diseases.

摘要

罕见病,尽管单种疾病发病率低,但总体上影响着十分之一的美国人。由于其罕见性,罕见病患者通常被误诊或未被诊断出来,这导致了漫长的就医过程。罕见病的诊断途径高度依赖于相关的临床表型,即个体在身体、形态或生化水平上可观察到的特征。在我们之前的研究中,我们将协同过滤模型应用于梅奥诊所生成的临床数据,以将患者分层为罕见病亚组。然而,从临床数据中挖掘出的信息通常包含一定程度的噪声,例如合并症的发生,这可能会影响鉴别诊断的准确性。在本研究中,我们试图将知识驱动的方法纳入协同过滤,以优化从临床数据中学到的结果。我们的结果表明,与纯数据驱动的方法相比,性能有所提高,有可能促进罕见病的鉴别诊断。

相似文献

4
Rare disease knowledge enrichment through a data-driven approach.通过数据驱动的方法丰富罕见病知识。
BMC Med Inform Decis Mak. 2019 Feb 14;19(1):32. doi: 10.1186/s12911-019-0752-9.
8
[From symptom to syndrome using modern software support].[借助现代软件支持从症状到综合征]
Internist (Berl). 2018 Aug;59(8):766-775. doi: 10.1007/s00108-018-0456-8.

本文引用的文献

6
Knowledge Discovery from Biomedical Ontologies in Cross Domains.跨领域生物医学本体中的知识发现
PLoS One. 2016 Aug 22;11(8):e0160005. doi: 10.1371/journal.pone.0160005. eCollection 2016.
9
Annotating the human genome with Disease Ontology.用疾病本体论注释人类基因组。
BMC Genomics. 2009 Jul 7;10 Suppl 1(Suppl 1):S6. doi: 10.1186/1471-2164-10-S1-S6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验