Köhler S
Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Deutschland.
Einstein Center Digital Future, Wilhelmstr. 67, 10117, Berlin, Deutschland.
Internist (Berl). 2018 Aug;59(8):766-775. doi: 10.1007/s00108-018-0456-8.
Diagnosing rare diseases can be challenging for clinicians. This article gives an overview on novel approaches, which enable automated phenotype-driven analyses of differential diagnoses for rare diseases as well as genomic variation data of affected individuals. The focus lies on reliable methods for collating clinical phenotypic data and new algorithms for precise and robust assessment of the similarity between phenotypic profiles. The Human Phenotype Ontology project (HPO; www.human-phenotype-ontology.org ) provides an ontology for collating symptoms and clinical phenotypic abnormalities. Using ontologies makes it possible to capture these data in a precise and comprehensive fashion as well as to apply reliable and robust automated analyses. Tools, such as the Phenomizer, enable the algorithmic calculation of similarity values amongst patients or between patients and disease descriptions. Such digital tools represent a solid foundation for differential diagnostic applications. Many rare diseases have a strong genetic component but the analysis of the coding DNA variants in rare disease patients is an enormously complex procedure, which often impedes successful molecular diagnostics. In this situation a combined analysis of the patients HPO-coded phenotypic features and the genomic characteristics of the variants can be of substantial help. In this case the HPO project and the associated algorithms are helpful: it is therefore an important component for phenotype-driven translational research and prioritization of disease-relavant genomic variations.
对临床医生来说,诊断罕见病可能具有挑战性。本文概述了一些新方法,这些方法能够对罕见病的鉴别诊断进行自动化的表型驱动分析以及对患病个体的基因组变异数据进行分析。重点在于整理临床表型数据的可靠方法以及精确且稳健地评估表型概况之间相似性的新算法。人类表型本体项目(HPO;www.human-phenotype-ontology.org)提供了一个用于整理症状和临床表型异常的本体。使用本体能够以精确且全面的方式获取这些数据,并应用可靠且稳健的自动化分析。诸如Phenomizer之类的工具能够对患者之间或患者与疾病描述之间的相似性值进行算法计算。此类数字工具为鉴别诊断应用奠定了坚实基础。许多罕见病具有很强的遗传成分,但对罕见病患者编码DNA变异的分析是一个极其复杂的过程,这常常阻碍成功的分子诊断。在这种情况下,对患者的HPO编码表型特征和变异的基因组特征进行联合分析可能会有很大帮助。在这种情况下,HPO项目及相关算法很有用:因此,它是表型驱动的转化研究以及对疾病相关基因组变异进行优先级排序的重要组成部分。