Miller Charlotte Elizabeth, Johnson Laura Elizabeth, Pinkard Henry, Lemelin Pierre, Schmitt Daniel
1Centre for Applied Anatomy, University of Bristol, Southwell Street, Bristol, BS2 8EJ UK.
2Department of Pathology and Anatomical Sciences, University of Missouri, Missouri, USA.
Front Zool. 2019 Feb 18;16:5. doi: 10.1186/s12983-019-0299-8. eCollection 2019.
Previous analyses of factors influencing footfall timings and gait selection in quadrupeds have focused on the implications for energetic cost or gait mechanics separately. Here we present a model for symmetrical walking gaits in quadrupedal mammals that combines both factors, and aims to predict the substrate contexts in which animals will select certain ranges of footfall timings that (1) minimize energetic cost, (2) minimize rolling and pitching moments, or (3) balance the two. We hypothesize that energy recovery will be a priority on all surfaces, and will be the dominant factor determining footfall timings on flat, ground-like surfaces. The ability to resist pitch and roll, however, will play a larger role in determining footfall choice on narrower and more complex branch-like substrates. As a preliminary test of the expectations of the model, we collected sample data on footfall timings in a primate with relatively high flexibility in footfall timings - the squirrel monkey () - walking on a flat surface, straight pole, and a pole with laterally-projecting branches to simulate simplified ground and branch substrates. We compare limb phase values on these supports to the expectations of the model.
As predicted, walking steps on the flat surface tended towards limb phase values that promote energy exchange. Both pole substrates induced limb phase values predicted to favor reduced pitching and rolling moments.
These data provide novel insight into the ways in which animals may choose to adjust their behavior in response to movement on flat versus complex substrates and the competing selective factors that influence footfall timing in mammals. These data further suggest a pathway for future investigations using this perspective.
以往对四足动物步幅时间和步态选择影响因素的分析,分别聚焦于对能量消耗或步态力学的影响。在此,我们提出一个四足哺乳动物对称行走步态模型,该模型结合了这两个因素,旨在预测动物在何种地面环境下会选择特定步幅时间范围,这些步幅时间范围能够:(1)使能量消耗最小化;(2)使滚动和俯仰力矩最小化;或(3)平衡这两者。我们假设在所有表面上能量回收都是优先考虑的因素,并且将是决定在平坦、类似地面的表面上步幅时间的主导因素。然而,抵抗俯仰和滚动的能力在决定在更窄且更复杂的树枝状地面上的步态选择时将发挥更大作用。作为对该模型预期的初步测试,我们收集了关于一种在步幅时间上具有相对较高灵活性的灵长类动物——松鼠猴()在平坦表面、直杆以及带有侧向伸出树枝的杆上行走时的步幅时间样本数据,以模拟简化的地面和树枝状地面。我们将这些支撑物上的肢体相位值与模型预期进行比较。
如预测的那样,在平坦表面上行走的步幅倾向于朝着促进能量交换的肢体相位值发展。两种杆状支撑物都诱导出预测有利于减少俯仰和滚动力矩的肢体相位值。
这些数据为动物如何根据在平坦与复杂地面上的运动以及影响哺乳动物步幅时间的相互竞争的选择因素来调整其行为提供了新的见解。这些数据进一步提出了从这个角度进行未来研究的途径。