Suppr超能文献

阿尔茨海默病中 K16A 和 K28A 突变对淀粉样β肽结构和动力学的影响:分子动力学模拟的关键见解。

Impact of K16A and K28A mutation on the structure and dynamics of amyloid-β peptide in Alzheimer's disease: key insights from molecular dynamics simulations.

机构信息

Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India.

School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab, India.

出版信息

J Biomol Struct Dyn. 2020 Feb;38(3):708-721. doi: 10.1080/07391102.2019.1586587. Epub 2019 Apr 2.

Abstract

The aggregation of amyloid-β (Aβ) peptide into toxic oligomers and fibrils is a key step in the Alzheimer disease pathogenesis. The recent studies highlighted that lysine residues (K16 and K28) play a critical role in the Aβ self-assembly and are the target of entities like molecular tweezer, CLR01. The studies reveal that lysine to alanine mutation significantly affect Aβ oligomerization, toxicity and aggregation process. However, the molecular mechanism behind reduced Aβ toxicity on K16A and K28A mutation remain elusive. In this regard, molecular dynamics (MD) simulations were performed in the present study to get insights into the effect of K16A and K28A mutation in Aβ self-assembly. The MD simulations highlighted that K16A and K28A mutation in the aggregation-prone region, i.e., central hydrophobic core (KLVFF, 16-20) and bend region (D23-K28), cause major structural changes in the Aβ monomer. The secondary structure analysis highlight that modulation of aggregation in K16A and K28A is linked to the increase in the overall helix content and a concomitant decrease in the β-sheet content of Aβ monomer. The short-range tertiary contacts between central hydrophobic core and C-terminal region were relatively reduced in K16A and K28A as compare to wild type (wt) Aβ. The mechanistic insights from the study will be beneficial for the design and development of novel inhibitors that will bind and block the interactions, mediated by lysine residues specifically, critical for the Aβ self-assembly in Alzheimer disease. [Formula: see text] The molecular mechanism behind modulation of amyloid-β (Aβ) self-assembly on K16A and K28A mutation has been investigated using molecular dynamics (MD) simulations. MD simulations reveal that reduced aggregation in K16A and K28A is linked to the increase in the overall helix content and a concomitant decrease in the β-sheet content, particularly at the C-terminal region, of Aβ.Communicated by Ramaswamy H. Sarma.

摘要

淀粉样蛋白-β(Aβ)肽聚集形成毒性寡聚体和纤维是阿尔茨海默病发病机制的关键步骤。最近的研究强调,赖氨酸残基(K16 和 K28)在 Aβ 自组装中起着关键作用,是分子钳子、CLR01 等物质的靶点。研究表明,赖氨酸突变为丙氨酸会显著影响 Aβ 寡聚化、毒性和聚集过程。然而,K16A 和 K28A 突变降低 Aβ 毒性的分子机制仍不清楚。在这方面,本研究进行了分子动力学(MD)模拟,以深入了解 K16A 和 K28A 突变对 Aβ 自组装的影响。MD 模拟结果表明,在聚集倾向区域(即中央疏水区(KLVFF,16-20)和弯曲区域(D23-K28))的 K16A 和 K28A 突变导致 Aβ 单体的主要结构变化。二级结构分析表明,K16A 和 K28A 中聚集的调节与 Aβ 单体整体螺旋含量的增加和β-折叠含量的相应减少有关。与野生型(wt)Aβ 相比,K16A 和 K28A 中中央疏水区和 C 末端区域之间的短程三级接触相对减少。该研究的机制见解将有助于设计和开发新型抑制剂,这些抑制剂将结合并阻断赖氨酸残基介导的、对阿尔茨海默病中 Aβ 自组装至关重要的相互作用。[公式:见正文] 使用分子动力学(MD)模拟研究了 K16A 和 K28A 突变对 Aβ 自组装的调节背后的分子机制。MD 模拟结果表明,K16A 和 K28A 中聚集减少与 Aβ 整体螺旋含量的增加和β-折叠含量的相应减少有关,特别是在 C 末端区域。由 Ramaswamy H. Sarma 传达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验