Suppr超能文献

细菌驱动微游动体的随机模型。

A stochastic model for bacteria-driven micro-swimmers.

机构信息

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.

出版信息

Soft Matter. 2019 Mar 20;15(12):2605-2616. doi: 10.1039/c8sm02157k.

Abstract

Experiments have recently shown the feasibility of utilising bacteria as micro-scale robotic devices, with special attention paid to the development of bacteria-driven micro-swimmers taking advantage of built-in actuation and sensing mechanisms of cells. Here we propose a stochastic fluid dynamic model to describe analytically and computationally the dynamics of microscopic particles driven by the motion of surface-attached bacteria undergoing run-and-tumble motion. We compute analytical expressions for the rotational diffusion coefficient, the swimming speed and the effective diffusion coefficient. At short times, the mean squared displacement (MSD) is proportional to the square of the swimming speed, which is independent of the particle size (for fixed density of attached bacteria) and scales linearly with the number of attached bacteria; in contrast, at long times the MSD scales quadratically with the size of the swimmer and is independent of the number of bacteria. We then extend our result to the situation where the surface-attached bacteria undergo chemotaxis within the linear response regime. We demonstrate that bacteria-driven particles are capable of performing artificial chemotaxis, with a chemotactic drift velocity linear in the chemical concentration gradient and independent of the size of the particle. Our results are validated against numerical simulations in the Brownian dynamics limit and will be relevant to the optimal design of micro-swimmers for biomedical applications.

摘要

最近的实验表明,利用细菌作为微尺度机器人设备是可行的,特别关注利用细胞内置的驱动和传感机制来开发细菌驱动的微型游泳者。在这里,我们提出了一个随机流体动力学模型,以分析和计算受附着在表面上的细菌运动驱动的微观粒子的动力学,这些细菌经历了跑和转的运动。我们计算了旋转扩散系数、游动速度和有效扩散系数的解析表达式。在短时间内,均方根位移(MSD)与游动速度的平方成正比,这与粒子的大小(对于附着细菌的固定密度)无关,并且与附着细菌的数量呈线性关系;相比之下,在长时间内,MSD 与游泳者的大小呈二次关系,与细菌的数量无关。然后,我们将我们的结果扩展到表面附着的细菌在线性响应范围内进行趋化运动的情况。我们证明了细菌驱动的粒子能够进行人工趋化运动,其趋化漂移速度与化学浓度梯度呈线性关系,与粒子的大小无关。我们的结果与布朗动力学极限下的数值模拟进行了验证,这将与生物医学应用中微游泳者的最佳设计相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验