Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carretera Irapuato-León 36821, Irapuato, Gto, CP 36500, Mexico; Department of Chemistry, University of California, Davis, CA, 95616, USA.
Department of Chemistry, University of California, Davis, CA, 95616, USA.
DNA Repair (Amst). 2019 Apr;76:76-88. doi: 10.1016/j.dnarep.2019.02.009. Epub 2019 Feb 22.
During its life cycle, the protist parasite Entamoeba histolytica encounters reactive oxygen and nitrogen species that alter its genome. Base excision repair (BER) is one of the most important pathways for the repair of DNA base lesions. Analysis of the E. histolytica genome revealed the presence of most of the BER components. Surprisingly, this included a gene encoding an apurinic/apyrimidinic (AP) endonuclease that previous studies had assumed was absent. Indeed, our analysis showed that the genome of E. histolytica harbors the necessary genes needed for both short and long-patch BER sub-pathways. These genes include DNA polymerases with predicted 5'-dRP lyase and strand-displacement activities and a sole DNA ligase. A distinct feature of the E. histolytica genome is the lack of several key damage-specific BER glycosylases, such as OGG1/MutM, MDB4, Mag1, MPG, SMUG, and TDG. Our evolutionary analysis indicates that several E. histolytica DNA glycosylases were acquired by lateral gene transfer (LGT). The genes that encode for MutY, AlkD, and UDG (Family VI) are included among these cases. Endonuclease III and UNG (family I) are the only DNA glycosylases with a eukaryotic origin in E. histolytica. A gene encoding a MutT 8-oxodGTPase was also identified that was acquired by LGT. The mixed composition of BER genes as a DNA metabolic pathway shaped by LGT in E. histolytica indicates that LGT plays a major role in the evolution of this eukaryote. Sequence and structural prediction of E. histolytica DNA glycosylases, as well as MutT, suggest that the E. histolytica DNA repair proteins evolved to harbor structural modifications that may confer unique biochemical features needed for the biology of this parasite.
在其生命周期中,原生动物寄生虫溶组织内阿米巴会遇到改变其基因组的活性氧和氮物种。碱基切除修复 (BER) 是修复 DNA 碱基损伤的最重要途径之一。溶组织内阿米巴基因组的分析显示存在大多数 BER 成分。令人惊讶的是,这包括编码一种无嘌呤/无嘧啶 (AP) 内切核酸酶的基因,先前的研究假设该基因不存在。事实上,我们的分析表明,溶组织内阿米巴的基因组包含短和长补丁 BER 亚途径所需的必要基因。这些基因包括具有预测的 5'-dRP 裂解酶和链置换活性的 DNA 聚合酶,以及单一的 DNA 连接酶。溶组织内阿米巴基因组的一个显著特征是缺乏几个关键的损伤特异性 BER 糖基化酶,如 OGG1/MutM、MDB4、Mag1、MPG、SMUG 和 TDG。我们的进化分析表明,溶组织内阿米巴的几个 DNA 糖基化酶是通过横向基因转移 (LGT) 获得的。编码 MutY、AlkD 和 UDG(家族 VI)的基因就是这种情况。endonuclease III 和 UNG(家族 I)是溶组织内阿米巴中具有真核起源的唯一 DNA 糖基化酶。还鉴定了一个编码 MutT 8-oxodGTPase 的基因,该基因也是通过 LGT 获得的。作为一种由 LGT 塑造的 DNA 代谢途径,BER 基因的混合组成表明 LGT 在这种真核生物的进化中起着主要作用。溶组织内阿米巴 DNA 糖基化酶以及 MutT 的序列和结构预测表明,溶组织内阿米巴的 DNA 修复蛋白进化为具有结构修饰,这些修饰可能赋予该寄生虫生物学所需的独特生化特征。