Suppr超能文献

IKULDAS:一种改进的基于神经网络的 UHF RFID 室内定向辐射场景定位算法。

IKULDAS: An Improved NN-Based UHF RFID Indoor Localization Algorithm for Directional Radiation Scenario.

机构信息

School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China.

Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tianjin Polytechnic University, Tianjin 300387, China.

出版信息

Sensors (Basel). 2019 Feb 25;19(4):968. doi: 10.3390/s19040968.

Abstract

Ultra high frequency radio frequency identification (UHF RFID)-based indoor localization technology has been a competitive candidate for context-awareness services. Previous works mainly utilize a simplified Friis transmission equation for simulating/rectifying received signal strength indicator (RSSI) values, in which the directional radiation of tag antenna and reader antenna was not fully considered, leading to unfavorable performance degradation. Moreover, a -nearest neighbor (NN) algorithm is widely used in existing systems, whereas the selection of an appropriate value remains a critical issue. To solve such problems, this paper presents an improved NN-based indoor localization algorithm for a directional radiation scenario, IKULDAS. Based on the gain features of dipole antenna and patch antenna, a novel RSSI estimation model is first established. By introducing the inclination angle and rotation angle to characterize the antenna postures, the gains of tag antenna and reader antenna referring to direct path and reflection paths are re-expressed. Then, three strategies are proposed and embedded into typical NN for improving the localization performance. In IKULDAS, the optimal single fixed rotation angle is introduced for filtering a superior measurement and an NJW-based algorithm is advised for extracting nearest-neighbor reference tags. Furthermore, a dynamic mapping mechanism is proposed to accelerate the tracking process. Simulation results show that IKULDAS achieves a higher positioning accuracy and lower time consumption compared to other typical algorithms.

摘要

基于超高频射频识别 (UHF RFID) 的室内定位技术已成为感知上下文服务的有力竞争者。先前的工作主要利用简化的 Friis 传输方程来模拟/校正接收信号强度指示 (RSSI) 值,其中未充分考虑标签天线和阅读器天线的定向辐射,导致性能下降。此外,现有的系统广泛使用最近邻 (NN) 算法,但是 值的选择仍然是一个关键问题。为了解决这些问题,本文提出了一种针对定向辐射场景的改进 NN 室内定位算法 IKULDAS。基于偶极子天线和贴片天线的增益特性,首先建立了新颖的 RSSI 估计模型。通过引入倾斜角和旋转角来描述天线姿态,重新表示标签天线和阅读器天线的增益,包括直达路径和反射路径。然后,提出了三种策略并嵌入到典型的 NN 中,以提高定位性能。在 IKULDAS 中,引入了最佳的单一固定旋转角来过滤优良的测量值,并建议使用基于 NJW 的算法来提取最近邻参考标签。此外,还提出了一种动态映射机制来加速跟踪过程。仿真结果表明,与其他典型算法相比,IKULDAS 具有更高的定位精度和更低的时间消耗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38ce/6413016/5947468d4c28/sensors-19-00968-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验