Suppr超能文献

一种基于贝叶斯概率和K近邻的射频识别室内定位算法

An RFID Indoor Positioning Algorithm Based on Bayesian Probability and K-Nearest Neighbor.

作者信息

Xu He, Ding Ye, Li Peng, Wang Ruchuan, Li Yizhu

机构信息

School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210003, China.

出版信息

Sensors (Basel). 2017 Aug 5;17(8):1806. doi: 10.3390/s17081806.

Abstract

The Global Positioning System (GPS) is widely used in outdoor environmental positioning. However, GPS cannot support indoor positioning because there is no signal for positioning in an indoor environment. Nowadays, there are many situations which require indoor positioning, such as searching for a book in a library, looking for luggage in an airport, emergence navigation for fire alarms, robot location, etc. Many technologies, such as ultrasonic, sensors, Bluetooth, WiFi, magnetic field, Radio Frequency Identification (RFID), etc., are used to perform indoor positioning. Compared with other technologies, RFID used in indoor positioning is more cost and energy efficient. The Traditional RFID indoor positioning algorithm LANDMARC utilizes a Received Signal Strength (RSS) indicator to track objects. However, the RSS value is easily affected by environmental noise and other interference. In this paper, our purpose is to reduce the location fluctuation and error caused by multipath and environmental interference in LANDMARC. We propose a novel indoor positioning algorithm based on Bayesian probability and -Nearest Neighbor (BKNN). The experimental results show that the Gaussian filter can filter some abnormal RSS values. The proposed BKNN algorithm has the smallest location error compared with the Gaussian-based algorithm, LANDMARC and an improved KNN algorithm. The average error in location estimation is about 15 cm using our method.

摘要

全球定位系统(GPS)广泛应用于户外环境定位。然而,GPS无法支持室内定位,因为在室内环境中没有用于定位的信号。如今,有许多情况需要室内定位,例如在图书馆找书、在机场找行李、火灾报警的应急导航、机器人定位等。许多技术,如超声波、传感器、蓝牙、WiFi、磁场、射频识别(RFID)等,都被用于进行室内定位。与其他技术相比,用于室内定位的RFID成本更低且更节能。传统的RFID室内定位算法LANDMARC利用接收信号强度(RSS)指标来跟踪物体。然而,RSS值很容易受到环境噪声和其他干扰的影响。在本文中,我们的目的是减少LANDMARC中由多径和环境干扰引起的位置波动和误差。我们提出了一种基于贝叶斯概率和 - 最近邻(BKNN)的新型室内定位算法。实验结果表明,高斯滤波器可以过滤一些异常的RSS值。与基于高斯的算法、LANDMARC和改进的KNN算法相比,所提出的BKNN算法具有最小的定位误差。使用我们的方法,位置估计的平均误差约为15厘米。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3022/5579496/9affd92341ef/sensors-17-01806-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验