Suppr超能文献

Thinger.io:物联网环境中部署数据融合应用的开源平台。

Thinger.io: An Open Source Platform for Deploying Data Fusion Applications in IoT Environments.

机构信息

Applied Artificial Intelligence Group, Universidad Carlos III de Madrid, Avda. Gregorio Peces-Barba y Martínez, 22, Colmenarejo, 28270 Madrid, Spain.

出版信息

Sensors (Basel). 2019 Mar 1;19(5):1044. doi: 10.3390/s19051044.

Abstract

In the last two decades, data and information fusion has experienced significant development due mainly to advances in sensor technology. The sensors provide a continuous flow of data about the environment in which they are deployed, which is received and processed to build a dynamic estimation of the situation. With current technology, it is relatively simple to deploy a set of sensors in a specific geographic area, in order to have highly sensorized spaces. However, to be able to fusion and process the information coming from the data sources of a highly sensorized space, it is necessary to solve certain problems inherent to this type of technology. The challenge is analogous to what we can find in the field of the Internet of Things (IoT). IoT technology is characterized by providing the infrastructure capacity to capture, store, and process a huge amount of heterogeneous sensor data (in most cases, from different manufacturers), in the same way that it occurs in data fusion applications. This work is not simple, mainly due to the fact that there is no standardization of the technologies involved (especially within the communication protocols used by the connectable sensors). The solutions that we can find today are proprietary solutions that imply an important dependence and a high cost. The aim of this paper is to present a new open source platform with capabilities for the collection, management and analysis of a huge amount of heterogeneous sensor data. In addition, this platform allows the use of hardware-agnostic in a highly scalable and cost-effective manner. This platform is called Thinger.io. One of the main characteristics of Thinger.io is the ability to model sensorized environments through a high level language that allows a simple and easy implementation of data fusion applications, as we will show in this paper.

摘要

在过去的二十年中,由于传感器技术的进步,数据和信息融合得到了显著的发展。传感器提供了关于其部署环境的连续数据流,这些数据被接收和处理,以建立对情况的动态估计。目前,在特定的地理区域部署一组传感器相对简单,以便实现高度传感器化的空间。然而,要能够融合和处理来自高度传感器化空间的数据源的信息,就必须解决这种技术所固有的某些问题。这个挑战类似于我们在物联网(IoT)领域中所面临的挑战。物联网技术的特点是提供基础设施能力,以捕获、存储和处理大量异构传感器数据(在大多数情况下,来自不同制造商),就像在数据融合应用中一样。这项工作并不简单,主要是因为所涉及的技术没有标准化(特别是在可连接传感器使用的通信协议中)。我们今天可以找到的解决方案是专有的解决方案,这意味着存在重要的依赖性和高成本。本文的目的是提出一个具有收集、管理和分析大量异构传感器数据能力的新的开源平台。此外,该平台允许以高度可扩展且具有成本效益的方式使用与硬件无关的方法。这个平台叫做 Thinger.io。Thinger.io 的一个主要特点是能够通过允许简单易用的数据融合应用程序实现的高级语言来对传感器化环境进行建模,正如我们将在本文中展示的那样。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e22c/6427624/bf6899129351/sensors-19-01044-g020.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验