Sene Ndolane
Laboratoire Lmdan, Département de Mathématiques de la Décision, Faculté des Sciences Economiques et Gestion, Université Cheikh Anta Diop de Dakar, BP 5683 Dakar Fann, Senegal.
Chaos. 2019 Feb;29(2):023112. doi: 10.1063/1.5082645.
Analytical solutions of the first and second model of Hristov fractional diffusion equations based on the non-singular Atangana-Baleanu derivative have been developed. The solutions are based on an integral method based on the consequent application of the Fourier and Laplace transforms. Particular cases of Hristov fractional diffusion equations considering operators with orders converging to unity have been analyzed, too.
基于非奇异阿坦加纳-巴莱亚努导数的赫里斯托夫分数阶扩散方程第一和第二模型的解析解已被推导出来。这些解基于一种积分方法,该方法依次应用了傅里叶变换和拉普拉斯变换。还分析了赫里斯托夫分数阶扩散方程在算子阶数趋近于1时的特殊情况。