Suppr超能文献

启动剪切条件下缠结聚合物熔体中晶体成核的分子动力学模拟。

Molecular dynamics simulations of crystal nucleation in entangled polymer melts under start-up shear conditions.

机构信息

School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom.

出版信息

J Chem Phys. 2019 Feb 28;150(8):084905. doi: 10.1063/1.5082244.

Abstract

Understanding the flow induced crystallisation process is necessary due to its technological relevance to polymer processing. Polymer crystallisation controls the morphology of semi-crystalline polymers and hence the properties of the end product. We perform molecular dynamics simulations of polymer melts consisting of sufficiently entangled linear chains under shear flow. We determine the Rouse relaxation time (τ) for linear polymer chains using an established rheological model at different temperatures and fit the simulation data with the Arrhenius and Williams-Landel-Ferry equations. We simulate the crystallisation induction times for different values of the Rouse-Weissenberg number (W=γ̇τ) at different temperatures. We observe that the level of strain and stretch required to induce crystallisation increases with temperature. We find that the induction times follow a power law in shear rate and observe a more pronounced effect of flow rate for higher temperatures than at lower temperatures. Moreover, we determine that nucleation events occur relatively early in the shear transient and at a stretch value that is smaller than its steady state value. We also report the values of strain at which the occurrence of a nucleation event is most likely to happen.

摘要

由于其在聚合物加工方面的技术相关性,理解流致结晶过程是必要的。聚合物结晶控制着半结晶聚合物的形态,从而控制着最终产品的性能。我们在剪切流下对由足够缠结的线性链组成的聚合物熔体进行分子动力学模拟。我们使用已建立的流变学模型在不同温度下确定线性聚合物链的罗瑟松弛时间(τ),并将模拟数据拟合到阿雷尼乌斯和威廉斯-兰德尔-费里方程中。我们模拟了不同温度下不同罗瑟-魏森伯格数(W=γ̇τ)值下的结晶诱导时间。我们观察到,诱导结晶所需的应变和拉伸水平随温度升高而增加。我们发现诱导时间在剪切速率下呈幂律关系,并观察到在较高温度下,流率对诱导时间的影响比在较低温度下更为显著。此外,我们确定成核事件发生在剪切瞬变的早期,并且在拉伸值小于其稳态值的情况下发生。我们还报告了最有可能发生成核事件的应变值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验