Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan.
Department of Physics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa 214-8571, Japan.
J Chem Phys. 2019 Feb 28;150(8):084113. doi: 10.1063/1.5083891.
Recently, dynamic analysis methods in signal processing have been applied to the analysis of molecular dynamics (MD) trajectories of biopolymers. In the context of a relaxation mode analysis (RMA) method, based on statistical physics, it is explained why the signal-processing methods work well for the simulation trajectories of biopolymers. A distinctive difference between the RMA method and the signal-processing methods is the introduction of an additional parameter, called an evolution time parameter. This parameter enables us to better estimate the relaxation modes and rates, although it increases computational difficulty. In this paper, we propose a simple and effective extension of the RMA method, which is referred to as the positive definite RMA method, to introduce the evolution time parameter robustly. In this method, an eigenvalue problem for the time correlation matrix of physical quantities relevant to slow relaxation in a system is first solved to find the subspace in which the matrix is numerically positive definite. Then, we implement the RMA method in the subspace. We apply the method to the analysis of a 3-μs MD trajectory of a heterotrimer of an erythropoietin protein and two of its receptor proteins, and we demonstrate the effectiveness of the method.
最近,信号处理中的动态分析方法已被应用于生物聚合物分子动力学(MD)轨迹的分析。在基于统计物理学的弛豫模式分析(RMA)方法的背景下,解释了为什么信号处理方法对生物聚合物的模拟轨迹有效。RMA 方法与信号处理方法的一个显著区别是引入了一个附加参数,称为演化时间参数。该参数虽然增加了计算难度,但可以更好地估计弛豫模式和速率。在本文中,我们提出了一种简单而有效的 RMA 方法的扩展,称为正定 RMA 方法,以稳健地引入演化时间参数。在该方法中,首先求解与系统中慢弛豫相关的物理量的时相关矩阵的特征值问题,以找到矩阵在数值上正定的子空间。然后,我们在子空间中执行 RMA 方法。我们将该方法应用于一个 3μs 的红细胞生成素蛋白与其两个受体蛋白的三聚体的 MD 轨迹的分析,并展示了该方法的有效性。