Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235.
Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235.
J Lipid Res. 2019 May;60(5):1032-1042. doi: 10.1194/jlr.M093526. Epub 2019 Mar 1.
Membrane asymmetry is a key organizational feature of the plasma membrane. Type IV P-type ATPases (P4-ATPases) are phospholipid flippases that establish membrane asymmetry by translocating phospholipids, such as phosphatidylserine (PS) and phospatidylethanolamine, from the exofacial leaflet to the cytosolic leaflet. expresses five P4-ATPases: Drs2, Neo1, Dnf1, Dnf2, and Dnf3. The inactivation of Neo1 is lethal, suggesting Neo1 mediates an essential function not exerted by the other P4-ATPases. However, the disruption of , which encodes a PQ-loop membrane protein, allows the growth of and reveals functional redundancy between Golgi-localized Neo1 and Drs2. Here we show Drs2 PS flippase activity is required to support viability. Additionally, a Dnf1 variant with enhanced PS flipping ability can replace Drs2 and Neo1 function in cells. also suppresses growth defects but not the loss of membrane asymmetry. Any1 overexpression perturbs the growth of cells but does not disrupt membrane asymmetry. Any1 coimmunoprecipitates with Neo1, an association prevented by the Any1-inactivating mutation D84G. These results indicate a critical role for PS flippase activity in Golgi membranes to sustain viability and suggests Any1 regulates Golgi membrane remodeling through protein-protein interactions rather than a previously proposed scramblase activity.
膜不对称性是质膜的一个关键组织特征。IV 型 P 型 ATP 酶(P4-ATPases)是磷脂翻转酶,通过将磷脂(如磷脂酰丝氨酸 [PS] 和磷脂酰乙醇胺)从质膜外叶转移到质膜胞质叶来建立膜不对称性。表达五种 P4-ATPases:Drs2、Neo1、Dnf1、Dnf2 和 Dnf3。Neo1 的失活是致命的,表明 Neo1 介导了其他 P4-ATPases 没有发挥的基本功能。然而, (编码 PQ 环膜蛋白)的破坏允许 的生长,并揭示了高尔基体定位的 Neo1 和 Drs2 之间的功能冗余。在这里,我们表明 Drs2 PS 翻转酶活性对于支持 的存活是必需的。此外,具有增强 PS 翻转能力的 Dnf1 变体可以替代 Drs2 和 Neo1 在 细胞中的功能。 还抑制 生长缺陷,但不破坏膜不对称性。Any1 过表达会扰乱细胞的生长,但不会破坏膜不对称性。Any1 与 Neo1 共免疫沉淀,Any1 失活突变 D84G 可阻止这种关联。这些结果表明 PS 翻转酶活性在高尔基体膜中对于维持活力具有关键作用,并表明 Any1 通过蛋白质-蛋白质相互作用而不是先前提出的裂合酶活性来调节高尔基体膜重塑。