Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States.
Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States; Howard Hughes Medical Institute, Boston University, Boston, MA 02215, United States.
Biosens Bioelectron. 2019 Apr 15;131:74-78. doi: 10.1016/j.bios.2019.02.032. Epub 2019 Feb 19.
Liver diseases represent a vastly underestimated and historically neglected public health problem, disproportionately affecting those in low- and middle- income countries (LMICs). Patients on hepatotoxic medications, such as HIV and TB medications, need consistent monitoring of liver function as part of their standard of care. In high resource settings, this is often the case, but in LMICs traditional methods fail due to high cost and lack of proper equipment, supplies and trained personnel. To address this gap in technology and patient care, we have developed a quantitative, electrochemical assay capable of quantifying levels of alanine aminotransferase (ALT), a primary biomarker associated with liver function. We can quantify ALT with increased sensitivity (1.53 nA/(U/L*mm) and over a wide, linear concentration range (40-1990 U/L). The assay demonstrated in this study can be used to overcome several pressing challenges associated with effective, timely treatment of liver disease in LMICs.
肝脏疾病是一个被严重低估且在历史上被忽视的公共卫生问题, disproportionately affecting those in low- and middle- income countries (LMICs). Patients on hepatotoxic medications, such as HIV and TB medications, need consistent monitoring of liver function as part of their standard of care. In high resource settings, this is often the case, but in LMICs traditional methods fail due to high cost and lack of proper equipment, supplies and trained personnel. To address this gap in technology and patient care, we have developed a quantitative, electrochemical assay capable of quantifying levels of alanine aminotransferase (ALT), a primary biomarker associated with liver function. We can quantify ALT with increased sensitivity (1.53 nA/(U/L*mm) and over a wide, linear concentration range (40-1990 U/L). The assay demonstrated in this study can be used to overcome several pressing challenges associated with effective, timely treatment of liver disease in LMICs.
肝脏疾病是一个被严重低估且在历史上被忽视的公共卫生问题, disproportionately affecting those in low- and middle- income countries (LMICs). Patients on hepatotoxic medications, such as HIV and TB medications, need consistent monitoring of liver function as part of their standard of care. In high resource settings, this is often the case, but in LMICs traditional methods fail due to high cost and lack of proper equipment, supplies and trained personnel. To address this gap in technology and patient care, we have developed a quantitative, electrochemical assay capable of quantifying levels of alanine aminotransferase (ALT), a primary biomarker associated with liver function. We can quantify ALT with increased sensitivity (1.53 nA/(U/L*mm) and over a wide, linear concentration range (40-1990 U/L). The assay demonstrated in this study can be used to overcome several pressing challenges associated with effective, timely treatment of liver disease in LMICs.