Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain.
Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain.
Dent Mater. 2019 May;35(5):697-708. doi: 10.1016/j.dental.2019.02.011. Epub 2019 Mar 1.
To elucidate the microstructural evolution of a commercial dental-grade lithium disilicate glass-ceramic using a wide battery of in-situ and ex-situ characterization techniques.
In-situ X-ray thermo-diffractometry experiments were conducted on a commercially available dental-grade lithium disilicate glass-ceramic under both non-isothermal and isothermal heat treatments in air. These analyses were complemented by experiments of ex-situ X-ray diffractometry, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, differential scanning calorimetry, and field-emission scanning electron thermo-microscopy.
It was found that the non-fired blue block consists of ∼40 vol % crystals embedded in a glass matrix. The crystals are mainly lithium metasilicate (LiSiO) along with small amounts of lithium orthophosphate (LiPO) and lithium disilicate (LiSiO). Upon heating, the glassy matrix in the as-received block first crystallizes partially as SiO (i.e., cristobalite) at ∼660 °C. Then, the SiO crystals react with the original LiSiO crystals at ∼735 °C, forming the desired LiSiO crystals by a solid-state reaction in equimolar concentration (SiO + LiSiO → LiSiO). Precipitation of added colourant Ce ions in the form of CeO appears at ∼775 °C. These events result in a glass-ceramic material with the aesthetic quality and mechanical integrity required for dental restorations. It also has a microstructure consisting essentially of elongated LiSiO grains in a glassy matrix plus small cubic CeO grains at the outermost part of the surface.
It was found that by judiciously controlling the heat treatment parameters, it is possible to tailor the microstructure of the resulting glass-ceramics and thus optimizing their performance and lifespan as dental restorations.
利用多种原位和异位表征技术阐明商业牙科级锂硅玻璃陶瓷的微观结构演变。
对市售牙科级锂硅玻璃陶瓷在空气非等温及等温热处理下进行原位 X 射线热衍射实验。这些分析由异位 X 射线衍射、场发射扫描电子显微镜、能谱、差示扫描量热法和场发射扫描电子热显微镜实验补充。
发现未烧制的蓝色块由约 40vol%的晶体嵌入玻璃基质中组成。晶体主要为锂硅酸钠(LiSiO),还有少量的磷酸锂(LiPO)和二硅酸锂(LiSiO)。加热时,原始块体中的玻璃基质首先部分结晶为 SiO(即方石英),在约 660°C。然后,SiO 晶体在约 735°C 与原始 LiSiO 晶体反应,通过等摩尔浓度的固态反应形成所需的 LiSiO 晶体(SiO+LiSiO→LiSiO)。添加的着色剂 Ce 离子以 CeO 的形式沉淀在约 775°C。这些事件导致具有美学质量和机械完整性的牙科修复体所需的玻璃陶瓷材料。它还具有基本上由玻璃基质中的拉长 LiSiO 晶粒和表面最外层的小立方 CeO 晶粒组成的微观结构。
发现通过谨慎控制热处理参数,可以调整所得玻璃陶瓷的微观结构,从而优化其作为牙科修复体的性能和寿命。