Department of Chemistry, School of Science , Xi'an Jiaotong University , Xianning West Road, 28 , Xi'an 710049 , China.
Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System , Xi'an Jiaotong University , Xi'an 710049 , China.
Inorg Chem. 2019 Mar 18;58(6):3950-3958. doi: 10.1021/acs.inorgchem.9b00010. Epub 2019 Mar 4.
Creating highly stable inorganic perovskite nanocrystals (CsPbX, where X = Cl, Br, and I) with excellent optical performance is challenging because their optical properties depend on their ionic structure and its inherent defects. Here, we present a facile and effective synthesis using a nanoconfinement strategy to grow Mn-doped CsPbCl nanocrystals embedded in dendritic mesoporous silica nanospheres (MSNs). The resulting nanocomposite is abbreviated as Cs(Pb /Mn)Cl@MSNs and can serve as the orange emitter for white light-emitting diodes (WLEDs). The MSN matrix was prepared via a templated sol-gel technique as monodispersed center-radial dendritic porous particles, with a diamater of ∼105 nm and an inner pore size of ∼13 nm. The MSN was then utilized as the matrix to initiate the growth of Mn-doped perovskite nanocrystals (NCs). The NCs in the resulting composite have an average diameter of 8 nm and a photoluminescence quantum yield of >30%. In addition, the optical properties of the Cs(Pb /Mn)Cl@MSNs can be tuned by varying the Mn doping level. The resulting composites presented a significantly improved resistance to ultraviolet (UV) light, temperature, and moisture compared to that of bare Cs(Pb/Mn)Cl. Finally, we fabricated down-converting WLEDs by using Cs(Pb /Mn)Cl@MSNs as the orange-emitting phosphor deposited onto UV-emitting chips, demonstrating their promising applications in solid-state lighting. This work provides a valuable approach to fabricating stable orange luminophores as replacements for traditional emitters in light-emitting diode devices.
制备具有优异光学性能的高度稳定的无机钙钛矿纳米晶体(CsPbX,其中 X = Cl、Br 和 I)具有挑战性,因为它们的光学性质取决于其离子结构及其固有缺陷。在这里,我们提出了一种简便有效的合成方法,即利用纳米限域策略生长嵌入树枝状介孔硅纳米球(MSNs)中的 Mn 掺杂 CsPbCl 纳米晶体。所得纳米复合材料缩写为 Cs(Pb/Mn)Cl@MSNs,可用作白色发光二极管(WLED)的橙色发射器。MSN 基质通过模板溶胶-凝胶技术制备,为单分散中心-放射状树枝状多孔颗粒,粒径约为 105nm,内孔尺寸约为 13nm。然后,MSN 被用作基质来引发 Mn 掺杂钙钛矿纳米晶体(NCs)的生长。所得复合材料中的 NCs 的平均直径为 8nm,光致发光量子产率>30%。此外,通过改变 Mn 掺杂水平可以调整 Cs(Pb/Mn)Cl@MSNs 的光学性质。与裸 Cs(Pb/Mn)Cl 相比,所得复合材料在耐紫外光、温度和湿度方面表现出显著改善。最后,我们将 Cs(Pb/Mn)Cl@MSNs 作为橙色发光磷光体沉积在紫外发光芯片上,制备下转换 WLED,证明了它们在固态照明中的应用前景。这项工作为制备稳定的橙色发光体提供了一种有价值的方法,可替代发光二极管器件中的传统发射器。