Liu Chang, Lin Jing, Zhai Wei, Wen Zhikai, He Xin, Yu Mengmeng, Huang Yang, Guo Zhonglu, Yu Chao, Tang Chengchun
School of Materials Science and Engineering, Hebei University of Technology Tianjin 300130 P. R. China
Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology Tianjin 300130 P. R. China.
RSC Adv. 2019 Nov 29;9(67):39315-39322. doi: 10.1039/c9ra08289a. eCollection 2019 Nov 27.
Doping metal ions in inorganic halide perovskite (CsPbX, X = Cl, Br, I) nanocrystals (NCs) endows the NCs with unique optical characteristics, and has thus attracted immense attention. However, controllable synthesis of high-quality doped perovskite NCs with tunable morphology still remains challenging. Here, we report a facile, effective and unified strategy for the controllable synthesis of Mn-doped CsPbCl quantum dots (QDs) and nanoplatelets (NPLs) a single-step solvothermal method. The incorporation of Mn into CsPbCl NCs introduces new broad photoluminescence (PL) emission from Mn while maintaining the structure of host CsPbCl NCs nearly intact. The PL intensity, emission peak position and size of the NCs can be accurately adjusted by altering the experimental parameters such as Mn-to-Pb feed ratio and reaction time. Especially, by changing the amount of ligands, Mn-doped CsPbCl QDs, NPLs or their mixtures can be obtained. Both of the Mn-doped QDs and NPLs exhibit a size-dependent quantum confinement effect, which is confirmed by the relationship between the size of NCs and the exciton emission peaks. The solvothermal reaction condition plays an important role for the precise control of the structure, morphology and PL properties of the Mn-doped NCs. The as-prepared Mn-doped CsPbCl NPLs with thickness down to ∼2 nm exhibit a PL quantum yield (PLQY) of more than 22%. This work introduces a new strategy for the controllable synthesis of Mn-doped perovskite NCs, which provides ideas for the in-depth study of the dope-and-grow process and can be extended to approaches of doping other metal ions.
在无机卤化物钙钛矿(CsPbX,X = Cl、Br、I)纳米晶体(NCs)中掺杂金属离子赋予了这些纳米晶体独特的光学特性,因此引起了极大关注。然而,可控合成具有可调形态的高质量掺杂钙钛矿纳米晶体仍然具有挑战性。在此,我们报道了一种简便、有效且统一的策略,用于可控合成Mn掺杂的CsPbCl量子点(QDs)和纳米片(NPLs)——一种单步溶剂热法。将Mn掺入CsPbCl纳米晶体中会引入来自Mn的新的宽光致发光(PL)发射,同时使主体CsPbCl纳米晶体的结构几乎保持完整。通过改变诸如Mn与Pb的进料比和反应时间等实验参数,可以精确调节纳米晶体的PL强度、发射峰位置和尺寸。特别是,通过改变配体的量,可以获得Mn掺杂的CsPbCl量子点、纳米片或它们的混合物。Mn掺杂的量子点和纳米片均表现出尺寸依赖性量子限制效应,这通过纳米晶体尺寸与激子发射峰之间的关系得到证实。溶剂热反应条件对精确控制Mn掺杂纳米晶体的结构、形态和PL性质起着重要作用。所制备的厚度低至约2 nm的Mn掺杂CsPbCl纳米片表现出超过22%的PL量子产率(PLQY)。这项工作引入了一种可控合成Mn掺杂钙钛矿纳米晶体的新策略,为深入研究掺杂生长过程提供了思路,并且可以扩展到掺杂其他金属离子的方法。