Suppr超能文献

协同神经动力学方法在全局和组合优化中的应用。

A collaborative neurodynamic approach to global and combinatorial optimization.

机构信息

Department of Computer Science, City University of Hong Kong, Hong Kong; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.

Department of Computer Science, City University of Hong Kong, Hong Kong; School of Data Science, City University of Hong Kong, Hong Kong; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.

出版信息

Neural Netw. 2019 Jun;114:15-27. doi: 10.1016/j.neunet.2019.02.002. Epub 2019 Feb 21.

Abstract

In this paper, a collaborative neurodynamic optimization approach is proposed for global and combinatorial optimization. First, a combinatorial optimization problem is reformulated as a global optimization problem. Second, a neurodynamic optimization model based on an augmented Lagrangian function is proposed and its states are proven to be asymptotically stable at a strict local minimum in the presence of nonconvexity in objective function or constraints. In addition, multiple neurodynamic optimization models are employed to search for global optimal solutions collaboratively and particle swarm optimization (PSO) is used to optimize their initial states. The proposed approach is shown to be globally convergent to global optimal solutions as substantiated for solving benchmark problems.

摘要

本文提出了一种用于全局和组合优化的协同神经动力学优化方法。首先,将组合优化问题重新表述为全局优化问题。其次,提出了一种基于增广拉格朗日函数的神经动力学优化模型,并证明了在目标函数或约束存在非凸性的情况下,其状态在严格局部最小处渐近稳定。此外,采用多个神经动力学优化模型协同搜索全局最优解,并利用粒子群优化(PSO)优化其初始状态。所提出的方法被证明是全局收敛到全局最优解的,这在解决基准问题时得到了证实。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验