BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain.
Ramón y Cajal University Hospital, Ctra. de Colmenar Viejo, km 9,100, 28034 Madrid, Spain.
Int J Mol Sci. 2019 Mar 1;20(5):1076. doi: 10.3390/ijms20051076.
The combination of hydrodynamic and electrophoretic experiments and computer simulations is a powerful approach to study the interaction between proteins. In this work, we present hydrodynamic and electrophoretic experiments in an aqueous solution along with molecular dynamics and hydrodynamic modeling to monitor and compute biophysical properties of the interactions between the extracellular domain of the HER2 protein (eHER2) and the monoclonal antibody trastuzumab (TZM). The importance of this system relies on the fact that the overexpression of HER2 protein is related with the poor prognosis breast cancers (HER2++ positives), while the TZM is a monoclonal antibody for the treatment of this cancer. We have found and characterized two different complexes between the TZM and eHER2 proteins (1:1 and 1:2 TZM:eHER2 complexes). The conformational features of these complexes regulate their hydrodynamic and electrostatic properties. Thus, the results indicate a high degree of molecular flexibility in the systems that ultimately leads to higher values of the intrinsic viscosity, as well as lower values of diffusion coefficient than those expected for simple globular proteins. A highly asymmetric charge distribution is detected for the monovalent complex (1:1 complex), which has strong implications in correlations between the experimental electrophoretic mobility and the modeled net charge. In order to understand the dynamics of these systems and the role of the specific domains involved, it is essential to find biophysical correlations between dynamics, macroscopic transport and electrostatic properties. The results should be of general interest for researchers working in this area.
水动力和电泳实验与计算机模拟的结合是研究蛋白质相互作用的有力方法。在这项工作中,我们在水溶液中进行水动力和电泳实验,并结合分子动力学和水动力模型,以监测和计算 HER2 蛋白胞外域(eHER2)与单克隆抗体曲妥珠单抗(TZM)之间相互作用的生物物理特性。该系统的重要性在于 HER2 蛋白的过表达与预后不良的乳腺癌(HER2++阳性)有关,而 TZM 是治疗这种癌症的单克隆抗体。我们已经发现并表征了 TZM 和 eHER2 蛋白之间的两种不同复合物(1:1 和 1:2 TZM:eHER2 复合物)。这些复合物的构象特征调节它们的水动力和静电特性。因此,结果表明系统具有高度的分子灵活性,最终导致固有粘度值较高,扩散系数值低于简单球状蛋白的预期值。单价复合物(1:1 复合物)检测到高度不对称的电荷分布,这对实验电泳迁移率和模型化净电荷之间的相关性具有重要影响。为了理解这些系统的动力学以及涉及的特定域的作用,必须在动力学、宏观输运和静电特性之间找到生物物理相关性。这些结果对于该领域的研究人员应该具有普遍的兴趣。