Suppr超能文献

具有过量双向连接的啮齿动物 V1 皮质模型中的动力学和方向选择性。

Dynamics and orientation selectivity in a cortical model of rodent V1 with excess bidirectional connections.

机构信息

CNPP, CNRS UMR 8119, 45 Rue des Saints-Pères, 75270, Paris cedex 06, France.

出版信息

Sci Rep. 2019 Mar 4;9(1):3334. doi: 10.1038/s41598-019-40183-8.

Abstract

Recent experiments have revealed fine structure in cortical microcircuitry. In particular, bidirectional connections are more prevalent than expected by chance. Whether this fine structure affects cortical dynamics and function has not yet been studied. Here we investigate the effects of excess bidirectionality in a strongly recurrent network model of rodent V1. We show that reciprocal connections have only a very weak effect on orientation selectivity. We find that excess reciprocity between inhibitory neurons slows down the dynamics and strongly increases the Fano factor, while for reciprocal connections between excitatory and inhibitory neurons it has the opposite effect. In contrast, excess bidirectionality within the excitatory population has a minor effect on the neuronal dynamics. These results can be explained by an effective delayed neuronal self-coupling which stems from the fine structure. Our work suggests that excess bidirectionality between inhibitory neurons decreases the efficiency of feature encoding in cortex by reducing the signal to noise ratio. On the other hand it implies that the experimentally observed strong reciprocity between excitatory and inhibitory neurons improves the feature encoding.

摘要

最近的实验揭示了皮质微电路的精细结构。特别是,双向连接比随机预期更为普遍。这种精细结构是否会影响皮质动力学和功能尚未得到研究。在这里,我们在啮齿动物 V1 的强递归网络模型中研究了多余双向性的影响。我们表明,相互连接对方向选择性只有非常微弱的影响。我们发现,抑制性神经元之间过多的互惠关系会降低动力学并强烈增加 Fano 因子,而兴奋性和抑制性神经元之间的互惠连接则会产生相反的效果。相比之下,兴奋性群体内过多的双向性对神经元动力学的影响较小。这些结果可以通过源自精细结构的有效延迟神经元自耦合来解释。我们的工作表明,抑制性神经元之间过多的双向性通过降低信噪比来降低皮质中特征编码的效率。另一方面,这意味着实验观察到的兴奋性和抑制性神经元之间的强互惠关系改善了特征编码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bbd/6399237/5dec89450f18/41598_2019_40183_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验