National Institute of Mental Health Intramural Program, NIH, Bethesda, MD, USA.
National Institute of Mental Health Intramural Program, NIH, Bethesda, MD, USA; NIH-University of Maryland Graduate Partnerships Program, Bethesda, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.
Neuron. 2023 Dec 20;111(24):4086-4101.e5. doi: 10.1016/j.neuron.2023.09.010. Epub 2023 Oct 20.
Dense local, recurrent connections are a major feature of cortical circuits, yet how they affect neurons' responses has been unclear, with some studies reporting weak recurrent effects, some reporting amplification, and others indicating local suppression. Here, we show that optogenetic input to mouse V1 excitatory neurons generates salt-and-pepper patterns of both excitation and suppression. Responses in individual neurons are not strongly predicted by that neuron's direct input. A balanced-state network model reconciles a set of diverse observations: the observed dynamics, suppressed responses, decoupling of input and output, and long tail of excited responses. The model shows recurrent excitatory-excitatory connections are strong and also variable across neurons. Together, these results demonstrate that excitatory recurrent connections can have major effects on cortical computations by shaping and changing neurons' responses to input.
密集的局部、反复的连接是皮质回路的一个主要特征,但它们如何影响神经元的反应尚不清楚,一些研究报告称反复作用较弱,一些报告称反复作用增强,另一些报告称局部抑制。在这里,我们表明,光遗传学输入到小鼠 V1 兴奋性神经元会产生兴奋和抑制的椒盐模式。单个神经元的反应不能被该神经元的直接输入强烈预测。平衡状态网络模型协调了一系列不同的观察结果:观察到的动力学、抑制反应、输入和输出的解耦以及兴奋反应的长尾。该模型表明,兴奋性反复连接很强,而且在神经元之间也具有可变性。总的来说,这些结果表明,兴奋性反复连接可以通过塑造和改变神经元对输入的反应,对皮质计算产生重大影响。