Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
Angew Chem Int Ed Engl. 2019 May 6;58(19):6285-6289. doi: 10.1002/anie.201900788. Epub 2019 Apr 2.
Several genome engineering applications of CRISPR-Cas9, an RNA-guided DNA endonuclease, require precision control of Cas9 activity over dosage, timing, and targeted site in an organism. While some control of Cas9 activity over dose and time have been achieved using small molecules, and spatial control using light, no singular system with control over all the three attributes exists. Furthermore, the reported small-molecule systems lack wide dynamic range, have background activity in the absence of the small-molecule controller, and are not biologically inert, while the optogenetic systems require prolonged exposure to high-intensity light. We previously reported a small-molecule-controlled Cas9 system with some dosage and temporal control. By photocaging this Cas9 activator to render it biologically inert and photoactivatable, and employing next-generation protein engineering approaches, we have built a system with a wide dynamic range, low background, and fast photoactivation using a low-intensity light while rendering the small-molecule activator biologically inert. We anticipate these precision controls will propel the development of practical applications of Cas9.
CRISPR-Cas9 是一种 RNA 指导的 DNA 内切酶,在生物体中实现 Cas9 活性的剂量、时间和靶向位点的精确控制,这是几个基因组工程应用的需求。虽然已经使用小分子实现了对 Cas9 活性剂量和时间的一些控制,并且使用光实现了空间控制,但不存在单一的系统可以对所有三个属性进行控制。此外,报道的小分子系统缺乏宽动态范围,在没有小分子控制器的情况下存在背景活性,并且不是生物惰性的,而光遗传学系统需要长时间暴露在高强度光下。我们之前报道了一种具有一定剂量和时间控制的小分子控制的 Cas9 系统。通过光笼化这种 Cas9 激活剂使其具有生物惰性和光激活特性,并采用下一代蛋白质工程方法,我们构建了一个具有宽动态范围、低背景和快速光激活的系统,同时使用低强度光使小分子激活剂具有生物惰性。我们预计这些精确控制将推动 Cas9 的实际应用的发展。