Suppr超能文献

Sedimentation Velocity and Potential in Dilute Suspensions of Charge-Regulating Porous Spheres.

作者信息

Lin Chien Y, Keh Huan J

机构信息

Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan, ROC.

出版信息

J Phys Chem B. 2019 Apr 4;123(13):3002-3009. doi: 10.1021/acs.jpcb.9b00277. Epub 2019 Mar 14.

Abstract

The sedimentation of a charge-regulating porous sphere surrounded by an arbitrary electric double layer, which usually models a permeable polyelectrolyte coil or an aggregate of nanoparticles, is analyzed for the first time. The hydrodynamic frictional segments and ionogenic functional groups uniformly distribute in the porous sphere, and a regulation mechanism for the dissociation and association reactions occurring at these functional groups linearly relates the local electric potential to fixed charge density. The linearized electrokinetic equations governing the ionic concentration (or electrochemical potential energy), electric potential, and fluid velocity fields are solved for the case of a small basic fixed charge density by the regular perturbation method. Analytical formulae for the sedimentation velocity of a porous sphere and sedimentation potential of a dilute suspension of porous spheres are then obtained. The charge regulation tends to reduce the electrokinetic retardation to sedimentation velocity and the sedimentation potential (can be as much as 50 and 25%, respectively) compared to the case that the fixed charge density is a constant. Both the electrokinetic retardation to sedimentation velocity and the sedimentation potential vanish at the isoelectric point of the particles. The increase in the bulk concentration of the potential-determining ions crossing the isoelectric point changes signs of the fixed charges and thus causes a reversal in the direction of the sedimentation potential. The effects of charge regulation on the sedimentation of porous particles differ substantially from those of hard particles.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验