Joint Attosecond Laboratory, National Research Council and University of Ottawa, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.
Department of Physics, Ludwig-Maximilians-Universität Munich, Am Coulombwall 1, D-85748, Garching, Germany.
Nat Commun. 2019 Mar 5;10(1):1042. doi: 10.1038/s41467-019-09036-w.
Electron motion on the (sub-)femtosecond time scale constitutes the fastest response in many natural phenomena such as light-induced phase transitions and chemical reactions. Whereas static electron densities in single molecules can be imaged in real space using scanning tunnelling and atomic force microscopy, probing real-time electron motion inside molecules requires ultrafast laser pulses. Here, we demonstrate an all-optical approach to imaging an ultrafast valence electron wave packet in real time with a time-resolution of a few femtoseconds. We employ a pump-probe-deflect scheme that allows us to prepare an ultrafast wave packet via strong-field ionization and directly image the resulting charge oscillations in the residual ion. This approach extends and overcomes limitations in laser-induced orbital imaging and may enable the real-time imaging of electron dynamics following photoionization such as charge migration and charge transfer processes.
电子在(亚)飞秒时间尺度上的运动构成了许多自然现象中最快的响应,例如光致相变和化学反应。虽然单个分子中的静态电子密度可以使用扫描隧道显微镜和原子力显微镜在实空间中成像,但探测分子内部的实时电子运动需要超短激光脉冲。在这里,我们展示了一种使用超短激光脉冲实时成像超快价电子波包的全光学方法,时间分辨率为几个飞秒。我们采用泵浦-探测-偏转方案,通过强场电离制备超快波包,并直接在残留离子中成像产生的电荷振荡。这种方法扩展并克服了激光诱导轨道成像的局限性,可能使光致电离后电子动力学的实时成像成为可能,例如电荷迁移和电荷转移过程。