Suppr超能文献

基于单步方法的中国荷斯坦牛群体乳蛋白组成性状全基因组关联研究

Genome-Wide Association Study for Milk Protein Composition Traits in a Chinese Holstein Population Using a Single-Step Approach.

作者信息

Zhou Chenghao, Li Cong, Cai Wentao, Liu Shuli, Yin Hongwei, Shi Shaolei, Zhang Qin, Zhang Shengli

机构信息

Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.

出版信息

Front Genet. 2019 Feb 19;10:72. doi: 10.3389/fgene.2019.00072. eCollection 2019.

Abstract

Genome-wide association studies (GWASs) have been widely used to determine the genetic architecture of quantitative traits in dairy cattle. In this study, with the aim of identifying candidate genes that affect milk protein composition traits, we conducted a GWAS for nine such traits (α-casein, α-casein, β-casein, κ-casein, α-lactalbumin, β-lactoglobulin, casein index, protein percentage, and protein yield) in 614 Chinese Holstein cows using a single-step strategy. We used the Illumina BovineSNP50 Bead chip and imputed genotypes from high-density single-nucleotide polymorphisms (SNPs) ranging from 50 to 777 K, and subsequent to genotype imputation and quality control, we screened a total of 586,304 informative high-quality SNPs. Phenotypic observations for six major milk proteins (α-casein, α-casein, β-casein, κ-casein, α-lactalbumin, and β-lactoglobulin) were evaluated as weight proportions of the total protein fraction (wt/wt%) using a commercial enzyme-linked immunosorbent assay kit. Informative windows comprising five adjacent SNPs explaining no < 0.5% of the genomic variance per window were selected for gene annotation and gene network and pathway analyses. Gene network analysis performed using the STRING Genomics 10.0 database revealed a co-expression network comprising 46 interactions among 62 of the most plausible candidate genes. A total of 178 genomic windows and 194 SNPs on 24 bovine autosomes were significantly associated with milk protein composition or protein percentage. Regions affecting milk protein composition traits were mainly observed on chromosomes BTA 1, 6, 11, 13, 14, and 18. Of these, several windows were close to or within the , and genes, which have well-known effects on milk protein composition traits of dairy cattle. Taken together with previously reported quantitative trait loci and the biological functions of the identified genes, we propose 19 novel candidate genes affecting milk protein composition traits: , and . Our findings provide important insights into milk protein synthesis and indicate potential targets for improving milk quality.

摘要

全基因组关联研究(GWAS)已被广泛用于确定奶牛数量性状的遗传结构。在本研究中,为了鉴定影响乳蛋白组成性状的候选基因,我们采用单步策略对614头中国荷斯坦奶牛的9个此类性状(α-酪蛋白、α-酪蛋白、β-酪蛋白、κ-酪蛋白、α-乳白蛋白、β-乳球蛋白、酪蛋白指数、蛋白质百分比和蛋白质产量)进行了GWAS。我们使用了Illumina BovineSNP50 Bead芯片,并对50至777K的高密度单核苷酸多态性(SNP)进行了基因型填充,在基因型填充和质量控制之后,我们总共筛选了586,304个信息丰富的高质量SNP。使用商业酶联免疫吸附测定试剂盒,将六种主要乳蛋白(α-酪蛋白、α-酪蛋白、β-酪蛋白、κ-酪蛋白、α-乳白蛋白和β-乳球蛋白)的表型观察值评估为总蛋白组分的重量比例(wt/wt%)。选择包含五个相邻SNP的信息窗口,每个窗口解释的基因组变异不小于0.5%,用于基因注释以及基因网络和通路分析。使用STRING Genomics 10.0数据库进行的基因网络分析揭示了一个共表达网络,该网络由62个最有可能的候选基因之间的46个相互作用组成。在24条牛常染色体上,共有178个基因组窗口和194个SNP与乳蛋白组成或蛋白质百分比显著相关。影响乳蛋白组成性状的区域主要出现在牛染色体BTA 1、6、11、13、14和18上。其中,有几个窗口靠近或位于对奶牛乳蛋白组成性状有众所周知影响的 和 基因内或附近。结合先前报道的数量性状位点以及已鉴定基因的生物学功能,我们提出了19个影响乳蛋白组成性状的新候选基因: 、 和 。我们的研究结果为乳蛋白合成提供了重要见解,并指出了改善牛奶质量的潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa0e/6389681/c6242bd5cd16/fgene-10-00072-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验