School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou 310018 , P. R. China.
J Agric Food Chem. 2019 Mar 20;67(11):3198-3208. doi: 10.1021/acs.jafc.8b05024. Epub 2019 Mar 6.
Electrospun nanofiber membranes are widely investigated in the past few decades as candidates for tissue engineering, which can mimic natural extracellular matrix (ECM) and improve cell adhesion, proliferation, and expression on nanofiber membranes. However, the formation of bacterial biofilms on nanofiber membranes and application of the biofilm-integrated nanofiber membranes remain largely unknown. Here, electrospun cellulose acetate nanofiber membranes are first utilized as scaffold materials for Lactobacillus plantarum ( L. plantarum) biofilm formation. Nanofiber membranes proved to be an excellent scaffold for bacteria biofilm with high stability, where biofilms were interlocked with nanofibers forming a cohesive structure. In comparison with planktonic bacteria, L. plantarum biofilms on nanofiber membranes show excellent gastrointestinal resistance. Instead of decreasing, the number of viable cells increased after 3 h digestion in vitro. The L. plantarum biofilm-integrated nanofiber membranes were used as reusable starter cultures for fermented milk production showing excellent fermentative ability and higher survival of L. plantarum during shelf life. The viable cells in fermented milk remained at 11 log CFU/g throughout the reusable batches, which is far above the required value of 7 log CFU/g in commercial products. In addition, the produced fermented milk possesses shorter fermentation time and higher survival of probiotics during shelf life. The results suggest electrospun nanofiber membranes are ideal scaffold materials for bacteria biofilms immobilization in biotechnology and fermentation engineering, which broaden the potential use of electrospun nanofiber membranes in microbiology and strengthen the application of biofilms in fermentation engineering.
静电纺丝纳米纤维膜在过去几十年中被广泛研究,作为组织工程的候选材料,它可以模拟天然细胞外基质(ECM),并提高细胞在纳米纤维膜上的黏附、增殖和表达。然而,纳米纤维膜上细菌生物膜的形成以及生物膜整合的纳米纤维膜的应用在很大程度上仍然未知。在这里,首先将静电纺丝醋酸纤维素纳米纤维膜用作植物乳杆菌(L. plantarum)生物膜形成的支架材料。纳米纤维膜被证明是细菌生物膜的一种极好的支架,具有很高的稳定性,生物膜与纳米纤维交织在一起形成一个有凝聚力的结构。与浮游细菌相比,纳米纤维膜上的植物乳杆菌生物膜具有优异的胃肠道抗性。在体外消化 3 小时后,活菌数不仅没有减少,反而增加了。将植物乳杆菌生物膜整合的纳米纤维膜用作发酵乳的可重复使用的起始培养物,表现出优异的发酵能力和在保质期内植物乳杆菌的更高存活率。发酵乳中的活菌数在整个可重复批次中保持在 11 log CFU/g,远远高于商业产品中 7 log CFU/g 的要求值。此外,所生产的发酵乳具有更短的发酵时间和更高的保质期内益生菌的存活率。结果表明,静电纺丝纳米纤维膜是生物技术和发酵工程中细菌生物膜固定化的理想支架材料,拓宽了静电纺丝纳米纤维膜在微生物学中的潜在用途,并加强了生物膜在发酵工程中的应用。