Suppr超能文献

高通量筛选和贝叶斯机器学习用于金黄色葡萄球菌的铜依赖性抑制剂。

High-throughput screening and Bayesian machine learning for copper-dependent inhibitors of Staphylococcus aureus.

机构信息

Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, BBRB 562, 845 19th St S, Birmingham, AL 35294, USA.

出版信息

Metallomics. 2019 Mar 20;11(3):696-706. doi: 10.1039/c8mt00342d.

Abstract

One potential source of new antibacterials is through probing existing chemical libraries for copper-dependent inhibitors (CDIs), i.e., molecules with antibiotic activity only in the presence of copper. Recently, our group demonstrated that previously unknown staphylococcal CDIs were frequently present in a small pilot screen. Here, we report the outcome of a larger industrial anti-staphylococcal screen consisting of 40 771 compounds assayed in parallel, both in standard and in copper-supplemented media. Ultimately, 483 had confirmed copper-dependent IC50 values under 50 μM. Sphere-exclusion clustering revealed that these hits were largely dominated by sulfur-containing motifs, including benzimidazole-2-thiones, thiadiazines, thiazoline formamides, triazino-benzimidazoles, and pyridinyl thieno-pyrimidines. Structure-activity relationship analysis of the pyridinyl thieno-pyrimidines generated multiple improved CDIs, with activity likely dependent on ligand/ion coordination. Molecular fingerprint-based Bayesian classification models were built using Discovery Studio and Assay Central, a new platform for sharing and distributing cheminformatic models in a portable format, based on open-source tools. Finally, we used the latter model to evaluate a library of FDA-approved drugs for copper-dependent activity in silico. Two anti-helminths, albendazole and thiabendazole, scored highly and are known to coordinate copper ions, further validating the model's applicability.

摘要

一种潜在的新型抗菌药物来源是通过在现有的化学库中探测铜依赖性抑制剂(CDIs),即只有在存在铜的情况下才具有抗生素活性的分子。最近,我们的小组证明,在一个小型试点筛选中,经常存在以前未知的葡萄球菌 CDIs。在这里,我们报告了一个更大的工业抗葡萄球菌筛选的结果,该筛选包含 40771 种化合物,在标准和补充铜的培养基中平行进行测定。最终,有 483 种化合物在 50 μM 以下的铜依赖性 IC50 值得到了确认。球排除聚类显示,这些命中主要由含硫基序主导,包括苯并咪唑-2-硫酮、噻二嗪、噻唑啉甲酰胺、三嗪-苯并咪唑和吡啶基噻吩嘧啶。对吡啶基噻吩嘧啶的结构-活性关系分析生成了多个改进的 CDIs,其活性可能依赖于配体/离子配位。使用 Discovery Studio 和 Assay Central 构建了基于分子指纹的贝叶斯分类模型,这是一个新的平台,用于以可移植的格式共享和分发化学信息模型,基于开源工具。最后,我们使用后者模型在计算机上评估了一个 FDA 批准药物库的铜依赖性活性。两种抗蠕虫药物,阿苯达唑和噻苯达唑,得分很高,并且已知能与铜离子配位,进一步验证了该模型的适用性。

相似文献

3
Copper complexation screen reveals compounds with potent antibiotic properties against methicillin-resistant Staphylococcus aureus.
Antimicrob Agents Chemother. 2014 Jul;58(7):3727-36. doi: 10.1128/AAC.02316-13. Epub 2014 Apr 21.
4
High-throughput identification of antibacterials against methicillin-resistant Staphylococcus aureus (MRSA) and the transglycosylase.
Bioorg Med Chem. 2010 Dec 15;18(24):8512-29. doi: 10.1016/j.bmc.2010.10.036. Epub 2010 Oct 21.
5
High-Throughput Screening for Inhibitors of Wall Teichoic Acid Biosynthesis in Staphylococcus aureus.
Methods Mol Biol. 2019;1954:297-308. doi: 10.1007/978-1-4939-9154-9_23.
8
QSAR classification model for antibacterial compounds and its use in virtual screening.
J Chem Inf Model. 2012 Oct 22;52(10):2559-69. doi: 10.1021/ci300336v. Epub 2012 Oct 8.
9
Predictions of BuChE inhibitors using support vector machine and naive Bayesian classification techniques in drug discovery.
J Chem Inf Model. 2013 Nov 25;53(11):3009-20. doi: 10.1021/ci400331p. Epub 2013 Nov 6.

引用本文的文献

1
Identification of a copper-responsive small molecule inhibitor of uropathogenic .
J Bacteriol. 2024 Jul 25;206(7):e0011224. doi: 10.1128/jb.00112-24. Epub 2024 Jun 10.
2
A high-throughput response to the SARS-CoV-2 pandemic.
SLAS Discov. 2024 Jul;29(5):100160. doi: 10.1016/j.slasd.2024.100160. Epub 2024 May 16.
7
Machine Learning for Discovery of New ADORA Modulators.
Front Pharmacol. 2022 Jun 22;13:920643. doi: 10.3389/fphar.2022.920643. eCollection 2022.
8
Chalcones from Angelica keiskei (ashitaba) inhibit key Zika virus replication proteins.
Bioorg Chem. 2022 Mar;120:105649. doi: 10.1016/j.bioorg.2022.105649. Epub 2022 Jan 31.
9
Mycobacterium abscessus drug discovery using machine learning.
Tuberculosis (Edinb). 2022 Jan;132:102168. doi: 10.1016/j.tube.2022.102168. Epub 2022 Jan 20.
10
Machine Learning Models Identify Inhibitors of SARS-CoV-2.
J Chem Inf Model. 2021 Sep 27;61(9):4224-4235. doi: 10.1021/acs.jcim.1c00683. Epub 2021 Aug 13.

本文引用的文献

1
Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
Mol Pharm. 2018 Oct 1;15(10):4361-4370. doi: 10.1021/acs.molpharmaceut.8b00546. Epub 2018 Aug 28.
3
Assessment of Substrate-Dependent Ligand Interactions at the Organic Cation Transporter OCT2 Using Six Model Substrates.
Mol Pharmacol. 2018 Sep;94(3):1057-1068. doi: 10.1124/mol.117.111443. Epub 2018 Jun 8.
4
Comparing and Validating Machine Learning Models for Mycobacterium tuberculosis Drug Discovery.
Mol Pharm. 2018 Oct 1;15(10):4346-4360. doi: 10.1021/acs.molpharmaceut.8b00083. Epub 2018 Apr 26.
5
Copper Ions and Coordination Complexes as Novel Carbapenem Adjuvants.
Antimicrob Agents Chemother. 2018 Jan 25;62(2). doi: 10.1128/AAC.02280-17. Print 2018 Feb.
6
Copper and Antibiotics: Discovery, Modes of Action, and Opportunities for Medicinal Applications.
Adv Microb Physiol. 2017;70:193-260. doi: 10.1016/bs.ampbs.2017.01.007. Epub 2017 Mar 18.
7
The ChEMBL database in 2017.
Nucleic Acids Res. 2017 Jan 4;45(D1):D945-D954. doi: 10.1093/nar/gkw1074. Epub 2016 Nov 28.
9
8-Hydroxyquinolines Are Boosting Agents of Copper-Related Toxicity in Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2016 Sep 23;60(10):5765-76. doi: 10.1128/AAC.00325-16. Print 2016 Oct.
10
Development of a web-based tool for automated processing and cataloging of a unique combinatorial drug screen.
J Microbiol Methods. 2016 Jul;126:30-4. doi: 10.1016/j.mimet.2016.04.013. Epub 2016 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验