Suppr超能文献

关于单调算子有限和与一族非扩张映射的分裂可行性问题的收敛定理。

Convergence theorems for split feasibility problems on a finite sum of monotone operators and a family of nonexpansive mappings.

作者信息

Petrot Narin, Suwannaprapa Montira, Dadashi Vahid

机构信息

1Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, Thailand.

Department of Mathematics, Sari Branch, Islamic Azad University, Sari, Iran.

出版信息

J Inequal Appl. 2018;2018(1):205. doi: 10.1186/s13660-018-1799-3. Epub 2018 Aug 8.

Abstract

In this paper, we present two iterative algorithms for approximating a solution of the split feasibility problem on zeros of a sum of monotone operators and fixed points of a finite family of nonexpansive mappings. Weak and strong convergence theorems are proved in the framework of Hilbert spaces under some mild conditions. We apply the obtained main result for the problem of finding a common zero of the sum of inverse strongly monotone operators and maximal monotone operators, for finding a common zero of a finite family of maximal monotone operators, for finding a solution of multiple sets split common null point problem, and for finding a solution of multiple sets split convex feasibility problem. Some applications of the main results are also provided.

摘要

在本文中,我们提出了两种迭代算法,用于逼近单调算子之和的零点与非扩张映射有限族的不动点上的分裂可行性问题的解。在希尔伯特空间框架下,在一些温和条件下证明了弱收敛定理和强收敛定理。我们将所得主要结果应用于寻找逆强单调算子与极大单调算子之和的公共零点问题、寻找有限族极大单调算子的公共零点问题、寻找多集分裂公共零点问题的解以及寻找多集分裂凸可行性问题的解。还给出了主要结果的一些应用。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验