Yu Hai, Wang Fenghui
Department of Mathematics, Luoyang Normal University, Luoyang, P.R. China.
J Inequal Appl. 2018;2018(1):335. doi: 10.1186/s13660-018-1933-2. Epub 2018 Dec 7.
In this paper, we are concerned with the split equality problem (SEP) in Hilbert spaces. By converting it to a coupled fixed-point equation, we propose a new algorithm for solving the SEP. Whenever the convex sets involved are level sets of given convex functionals, we propose two new relaxed alternating algorithms for the SEP. The first relaxed algorithm is shown to be weakly convergent and the second strongly convergent. A new idea is introduced in order to prove strong convergence of the second relaxed algorithm, which gives an affirmative answer to Moudafi's question. Finally, preliminary numerical results show the efficiency of the proposed algorithms.
在本文中,我们关注希尔伯特空间中的分裂等式问题(SEP)。通过将其转化为一个耦合不动点方程,我们提出了一种求解SEP的新算法。当所涉及的凸集是给定凸泛函的水平集时,我们为SEP提出了两种新的松弛交替算法。第一种松弛算法被证明是弱收敛的,第二种是强收敛的。为了证明第二种松弛算法的强收敛性引入了一个新想法,这对穆达菲的问题给出了肯定的答案。最后,初步的数值结果表明了所提算法的有效性。