Yang Ping, Ding Jiachen, Panetta Richard Lee, Liou Kuo-Nan, Kattawar George W, Mishchenko Michael
Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USA.
Joint Institute for Regional Earth System Science and Engineering and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA.
Electromagn Waves (Camb). 2019;164:27-61.
We summarize the size parameter range of the applicability of four light-scattering computational methods for nonspherical dielectric particles. These methods include two exact methods - the extended boundary condition method (EBCM) and the invariant imbedding T-matrix method (II-TM) and two approximate approaches - the physical-geometric optics method (PGOM) and the improved geometric optics method (IGOM). For spheroids, the single-scattering properties computed by EBCM and II-TM agree for size parameters up to 150, and the comparison gives us confidence in using IITM as a benchmark for size parameters up to 150 for other geometries (e.g., hexagonal columns) because the applicability of II-TM with respect to particle shape is generic, as demonstrated in our previous studies involving a complex aggregate. This study demonstrates the convergence of the exact II-TM and approximate PGOM solutions for the complete set of single-scattering properties of a nonspherical shape other than spheroids and circular cylinders with particle sizes of 48λ(size parameter ~150), specifically a hexagonal column with a length size parameter of = 300 where = 2πλ and is the column length. IGOM is also quite accurate except near the exact 180°backscattering direction. This study demonstrates that a synergetic combination of the numerically-exact II-TM and the approximate PGOM can seamlessly cover the entire size parameter range of practical interest. To demonstrate the applicability of the approach, we compute the optical properties of dust particles and demonstrate a downstream application to the retrieval of dust aerosol optical thickness and effective particle size from satellite polarimetric observations.
我们总结了四种用于非球形介电粒子的光散射计算方法的适用尺寸参数范围。这些方法包括两种精确方法——扩展边界条件法(EBCM)和不变嵌入T矩阵法(II-TM),以及两种近似方法——物理几何光学法(PGOM)和改进几何光学法(IGOM)。对于椭球体,由EBCM和II-TM计算的单次散射特性在尺寸参数高达150时是一致的,这种比较让我们有信心将II-TM用作其他几何形状(如六棱柱)尺寸参数高达150时的基准,因为正如我们之前涉及复杂聚集体的研究所表明的,II-TM对于粒子形状的适用性是通用的。本研究证明了对于尺寸为48λ(尺寸参数~150)的非球形(非椭球体和圆柱体)的完整单次散射特性集,精确的II-TM和近似的PGOM解的收敛性,具体是指长度尺寸参数 = 300(其中 = 2πλ且 是柱体长度)的六棱柱。除了在精确的180°后向散射方向附近,IGOM也相当准确。本研究表明,数值精确的II-TM和近似的PGOM的协同组合可以无缝覆盖实际感兴趣的整个尺寸参数范围。为了证明该方法的适用性,我们计算了沙尘粒子的光学特性,并展示了其在从卫星偏振观测中反演沙尘气溶胶光学厚度和有效粒子尺寸方面的下游应用。